Cargando…

Composition and antioxidant activity of anthocyanins from Aronia melanocarpa extracted using an ultrasonic-microwave-assisted natural deep eutectic solvent extraction method

A time-saving, efficient, and environmentally friendly ultrasonic-microwave-assisted natural deep eutectic solvent (UMAE-NADES) extraction method was developed for the extraction of anthocyanins from Aronia melanocarpa. Eight different natural eutectic solvents were screened initially, and choline c...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Sixu, Meng, Xianjun, Tan, Chang, Tong, Yuqi, Wan, Meizhi, Wang, Mingyue, Zhao, Yang, Deng, Haotian, Kong, Yanwen, Ma, Yan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9428855/
https://www.ncbi.nlm.nih.gov/pubmed/36030674
http://dx.doi.org/10.1016/j.ultsonch.2022.106102
Descripción
Sumario:A time-saving, efficient, and environmentally friendly ultrasonic-microwave-assisted natural deep eutectic solvent (UMAE-NADES) extraction method was developed for the extraction of anthocyanins from Aronia melanocarpa. Eight different natural eutectic solvents were screened initially, and choline chloride-glycerol was selected as the extraction solvent. The extraction conditions were optimized using the response surface methodology, and the extraction rate of anthocyanins was higher than those achieved using the traditional ethanol method, natural deep eutectic solvent extraction method, and ultrasonic-microwave-assisted ethanol method. Six anthocyanins, including cyanidin-3-O-galactoside, cyanidin-3-O-glucoside, cyanidin-3-O-arabinoside, cyanidin-3-O-xyloside, cyanidin-3,5-O-dihexoside, and the dimer of cyanidin-hexoside were identified and extracted at a purity of 448.873 mg/g using high performance liquid chromatography-mass spectrometry (HPLC-MS). The compounds extracted using UMAE-NADES had higher antioxidant capacities than those extracted by the other three methods. The UMAE-NADES demonstrated significant efficiency toward the extraction of bioactive substances and has potential utility in the food and pharmaceutical industries.