Cargando…

Butyrate inhibits IL-1β-induced inflammatory gene expression by suppression of NF-κB activity in pancreatic beta cells

Cytokine-induced beta cell dysfunction is a hallmark of type 2 diabetes (T2D). Chronic exposure of beta cells to inflammatory cytokines affects gene expression and impairs insulin secretion. Thus, identification of anti-inflammatory factors that preserve beta cell function represents an opportunity...

Descripción completa

Detalles Bibliográficos
Autores principales: Pedersen, Signe Schultz, Prause, Michala, Williams, Kristine, Barrès, Romain, Billestrup, Nils
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Biochemistry and Molecular Biology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9428856/
https://www.ncbi.nlm.nih.gov/pubmed/35921894
http://dx.doi.org/10.1016/j.jbc.2022.102312
_version_ 1784779253623029760
author Pedersen, Signe Schultz
Prause, Michala
Williams, Kristine
Barrès, Romain
Billestrup, Nils
author_facet Pedersen, Signe Schultz
Prause, Michala
Williams, Kristine
Barrès, Romain
Billestrup, Nils
author_sort Pedersen, Signe Schultz
collection PubMed
description Cytokine-induced beta cell dysfunction is a hallmark of type 2 diabetes (T2D). Chronic exposure of beta cells to inflammatory cytokines affects gene expression and impairs insulin secretion. Thus, identification of anti-inflammatory factors that preserve beta cell function represents an opportunity to prevent or treat T2D. Butyrate is a gut microbial metabolite with anti-inflammatory properties for which we recently showed a role in preventing interleukin-1β (IL-1β)-induced beta cell dysfunction, but how prevention is accomplished is unclear. Here, we investigated the mechanisms by which butyrate exerts anti-inflammatory activity in beta cells. We exposed mouse islets and INS-1E cells to a low dose of IL-1β and/or butyrate and measured expression of inflammatory genes and nitric oxide (NO) production. Additionally, we explored the molecular mechanisms underlying butyrate activity by dissecting the activation of the nuclear factor-κB (NF-κB) pathway. We found that butyrate suppressed IL-1β-induced expression of inflammatory genes, such as Nos2, Cxcl1, and Ptgs2, and reduced NO production. Butyrate did not inhibit IκBα degradation nor NF-κB p65 nuclear translocation. Furthermore, butyrate did not affect binding of NF-κB p65 to target sequences in synthetic DNA but inhibited NF-κB p65 binding and RNA polymerase II recruitment to inflammatory gene promoters in the context of native DNA. We found this was concurrent with increased acetylation of NF-κB p65 and histone H4, suggesting butyrate affects NF-κB activity via inhibition of histone deacetylases. Together, our results show butyrate inhibits IL-1β-induced inflammatory gene expression and NO production through suppression of NF-κB activation and thereby possibly preserves beta cell function.
format Online
Article
Text
id pubmed-9428856
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Society for Biochemistry and Molecular Biology
record_format MEDLINE/PubMed
spelling pubmed-94288562022-09-08 Butyrate inhibits IL-1β-induced inflammatory gene expression by suppression of NF-κB activity in pancreatic beta cells Pedersen, Signe Schultz Prause, Michala Williams, Kristine Barrès, Romain Billestrup, Nils J Biol Chem Research Article Cytokine-induced beta cell dysfunction is a hallmark of type 2 diabetes (T2D). Chronic exposure of beta cells to inflammatory cytokines affects gene expression and impairs insulin secretion. Thus, identification of anti-inflammatory factors that preserve beta cell function represents an opportunity to prevent or treat T2D. Butyrate is a gut microbial metabolite with anti-inflammatory properties for which we recently showed a role in preventing interleukin-1β (IL-1β)-induced beta cell dysfunction, but how prevention is accomplished is unclear. Here, we investigated the mechanisms by which butyrate exerts anti-inflammatory activity in beta cells. We exposed mouse islets and INS-1E cells to a low dose of IL-1β and/or butyrate and measured expression of inflammatory genes and nitric oxide (NO) production. Additionally, we explored the molecular mechanisms underlying butyrate activity by dissecting the activation of the nuclear factor-κB (NF-κB) pathway. We found that butyrate suppressed IL-1β-induced expression of inflammatory genes, such as Nos2, Cxcl1, and Ptgs2, and reduced NO production. Butyrate did not inhibit IκBα degradation nor NF-κB p65 nuclear translocation. Furthermore, butyrate did not affect binding of NF-κB p65 to target sequences in synthetic DNA but inhibited NF-κB p65 binding and RNA polymerase II recruitment to inflammatory gene promoters in the context of native DNA. We found this was concurrent with increased acetylation of NF-κB p65 and histone H4, suggesting butyrate affects NF-κB activity via inhibition of histone deacetylases. Together, our results show butyrate inhibits IL-1β-induced inflammatory gene expression and NO production through suppression of NF-κB activation and thereby possibly preserves beta cell function. American Society for Biochemistry and Molecular Biology 2022-07-31 /pmc/articles/PMC9428856/ /pubmed/35921894 http://dx.doi.org/10.1016/j.jbc.2022.102312 Text en © 2022 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Research Article
Pedersen, Signe Schultz
Prause, Michala
Williams, Kristine
Barrès, Romain
Billestrup, Nils
Butyrate inhibits IL-1β-induced inflammatory gene expression by suppression of NF-κB activity in pancreatic beta cells
title Butyrate inhibits IL-1β-induced inflammatory gene expression by suppression of NF-κB activity in pancreatic beta cells
title_full Butyrate inhibits IL-1β-induced inflammatory gene expression by suppression of NF-κB activity in pancreatic beta cells
title_fullStr Butyrate inhibits IL-1β-induced inflammatory gene expression by suppression of NF-κB activity in pancreatic beta cells
title_full_unstemmed Butyrate inhibits IL-1β-induced inflammatory gene expression by suppression of NF-κB activity in pancreatic beta cells
title_short Butyrate inhibits IL-1β-induced inflammatory gene expression by suppression of NF-κB activity in pancreatic beta cells
title_sort butyrate inhibits il-1β-induced inflammatory gene expression by suppression of nf-κb activity in pancreatic beta cells
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9428856/
https://www.ncbi.nlm.nih.gov/pubmed/35921894
http://dx.doi.org/10.1016/j.jbc.2022.102312
work_keys_str_mv AT pedersensigneschultz butyrateinhibitsil1binducedinflammatorygeneexpressionbysuppressionofnfkbactivityinpancreaticbetacells
AT prausemichala butyrateinhibitsil1binducedinflammatorygeneexpressionbysuppressionofnfkbactivityinpancreaticbetacells
AT williamskristine butyrateinhibitsil1binducedinflammatorygeneexpressionbysuppressionofnfkbactivityinpancreaticbetacells
AT barresromain butyrateinhibitsil1binducedinflammatorygeneexpressionbysuppressionofnfkbactivityinpancreaticbetacells
AT billestrupnils butyrateinhibitsil1binducedinflammatorygeneexpressionbysuppressionofnfkbactivityinpancreaticbetacells