Cargando…
Impaired ketogenesis ties metabolism to T cell dysfunction in COVID-19
Anorexia and fasting are host adaptations to acute infection, and induce a metabolic switch towards ketogenesis and the production of ketone bodies, including β-hydroxybutyrate (BHB)(1–6). However, whether ketogenesis metabolically influences the immune response in pulmonary infections remains uncle...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9428867/ https://www.ncbi.nlm.nih.gov/pubmed/35901960 http://dx.doi.org/10.1038/s41586-022-05128-8 |
_version_ | 1784779256335695872 |
---|---|
author | Karagiannis, Fotios Peukert, Konrad Surace, Laura Michla, Marcel Nikolka, Fabian Fox, Mario Weiss, Patricia Feuerborn, Caroline Maier, Paul Schulz, Susanne Al, Burcu Seeliger, Benjamin Welte, Tobias David, Sascha Grondman, Inge de Nooijer, Aline H. Pickkers, Peter Kleiner, Jan Lukas Berger, Marc Moritz Brenner, Thorsten Putensen, Christian Kato, Hiroki Garbi, Natalio Netea, Mihai G. Hiller, Karsten Placek, Katarzyna Bode, Christian Wilhelm, Christoph |
author_facet | Karagiannis, Fotios Peukert, Konrad Surace, Laura Michla, Marcel Nikolka, Fabian Fox, Mario Weiss, Patricia Feuerborn, Caroline Maier, Paul Schulz, Susanne Al, Burcu Seeliger, Benjamin Welte, Tobias David, Sascha Grondman, Inge de Nooijer, Aline H. Pickkers, Peter Kleiner, Jan Lukas Berger, Marc Moritz Brenner, Thorsten Putensen, Christian Kato, Hiroki Garbi, Natalio Netea, Mihai G. Hiller, Karsten Placek, Katarzyna Bode, Christian Wilhelm, Christoph |
author_sort | Karagiannis, Fotios |
collection | PubMed |
description | Anorexia and fasting are host adaptations to acute infection, and induce a metabolic switch towards ketogenesis and the production of ketone bodies, including β-hydroxybutyrate (BHB)(1–6). However, whether ketogenesis metabolically influences the immune response in pulmonary infections remains unclear. Here we show that the production of BHB is impaired in individuals with SARS-CoV-2-induced acute respiratory distress syndrome (ARDS) but not in those with influenza-induced ARDS. We found that BHB promotes both the survival of and the production of interferon-γ by CD4(+) T cells. Applying a metabolic-tracing analysis, we established that BHB provides an alternative carbon source to fuel oxidative phosphorylation (OXPHOS) and the production of bioenergetic amino acids and glutathione, which is important for maintaining the redox balance. T cells from patients with SARS-CoV-2-induced ARDS were exhausted and skewed towards glycolysis, but could be metabolically reprogrammed by BHB to perform OXPHOS, thereby increasing their functionality. Finally, we show in mice that a ketogenic diet and the delivery of BHB as a ketone ester drink restores CD4(+) T cell metabolism and function in severe respiratory infections, ultimately reducing the mortality of mice infected with SARS-CoV-2. Altogether, our data reveal that BHB is an alternative source of carbon that promotes T cell responses in pulmonary viral infections, and highlight impaired ketogenesis as a potential confounding factor in severe COVID-19. |
format | Online Article Text |
id | pubmed-9428867 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-94288672022-09-01 Impaired ketogenesis ties metabolism to T cell dysfunction in COVID-19 Karagiannis, Fotios Peukert, Konrad Surace, Laura Michla, Marcel Nikolka, Fabian Fox, Mario Weiss, Patricia Feuerborn, Caroline Maier, Paul Schulz, Susanne Al, Burcu Seeliger, Benjamin Welte, Tobias David, Sascha Grondman, Inge de Nooijer, Aline H. Pickkers, Peter Kleiner, Jan Lukas Berger, Marc Moritz Brenner, Thorsten Putensen, Christian Kato, Hiroki Garbi, Natalio Netea, Mihai G. Hiller, Karsten Placek, Katarzyna Bode, Christian Wilhelm, Christoph Nature Article Anorexia and fasting are host adaptations to acute infection, and induce a metabolic switch towards ketogenesis and the production of ketone bodies, including β-hydroxybutyrate (BHB)(1–6). However, whether ketogenesis metabolically influences the immune response in pulmonary infections remains unclear. Here we show that the production of BHB is impaired in individuals with SARS-CoV-2-induced acute respiratory distress syndrome (ARDS) but not in those with influenza-induced ARDS. We found that BHB promotes both the survival of and the production of interferon-γ by CD4(+) T cells. Applying a metabolic-tracing analysis, we established that BHB provides an alternative carbon source to fuel oxidative phosphorylation (OXPHOS) and the production of bioenergetic amino acids and glutathione, which is important for maintaining the redox balance. T cells from patients with SARS-CoV-2-induced ARDS were exhausted and skewed towards glycolysis, but could be metabolically reprogrammed by BHB to perform OXPHOS, thereby increasing their functionality. Finally, we show in mice that a ketogenic diet and the delivery of BHB as a ketone ester drink restores CD4(+) T cell metabolism and function in severe respiratory infections, ultimately reducing the mortality of mice infected with SARS-CoV-2. Altogether, our data reveal that BHB is an alternative source of carbon that promotes T cell responses in pulmonary viral infections, and highlight impaired ketogenesis as a potential confounding factor in severe COVID-19. Nature Publishing Group UK 2022-07-28 2022 /pmc/articles/PMC9428867/ /pubmed/35901960 http://dx.doi.org/10.1038/s41586-022-05128-8 Text en © The Author(s), under exclusive licence to Springer Nature Limited 2022, Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
spellingShingle | Article Karagiannis, Fotios Peukert, Konrad Surace, Laura Michla, Marcel Nikolka, Fabian Fox, Mario Weiss, Patricia Feuerborn, Caroline Maier, Paul Schulz, Susanne Al, Burcu Seeliger, Benjamin Welte, Tobias David, Sascha Grondman, Inge de Nooijer, Aline H. Pickkers, Peter Kleiner, Jan Lukas Berger, Marc Moritz Brenner, Thorsten Putensen, Christian Kato, Hiroki Garbi, Natalio Netea, Mihai G. Hiller, Karsten Placek, Katarzyna Bode, Christian Wilhelm, Christoph Impaired ketogenesis ties metabolism to T cell dysfunction in COVID-19 |
title | Impaired ketogenesis ties metabolism to T cell dysfunction in COVID-19 |
title_full | Impaired ketogenesis ties metabolism to T cell dysfunction in COVID-19 |
title_fullStr | Impaired ketogenesis ties metabolism to T cell dysfunction in COVID-19 |
title_full_unstemmed | Impaired ketogenesis ties metabolism to T cell dysfunction in COVID-19 |
title_short | Impaired ketogenesis ties metabolism to T cell dysfunction in COVID-19 |
title_sort | impaired ketogenesis ties metabolism to t cell dysfunction in covid-19 |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9428867/ https://www.ncbi.nlm.nih.gov/pubmed/35901960 http://dx.doi.org/10.1038/s41586-022-05128-8 |
work_keys_str_mv | AT karagiannisfotios impairedketogenesistiesmetabolismtotcelldysfunctionincovid19 AT peukertkonrad impairedketogenesistiesmetabolismtotcelldysfunctionincovid19 AT suracelaura impairedketogenesistiesmetabolismtotcelldysfunctionincovid19 AT michlamarcel impairedketogenesistiesmetabolismtotcelldysfunctionincovid19 AT nikolkafabian impairedketogenesistiesmetabolismtotcelldysfunctionincovid19 AT foxmario impairedketogenesistiesmetabolismtotcelldysfunctionincovid19 AT weisspatricia impairedketogenesistiesmetabolismtotcelldysfunctionincovid19 AT feuerborncaroline impairedketogenesistiesmetabolismtotcelldysfunctionincovid19 AT maierpaul impairedketogenesistiesmetabolismtotcelldysfunctionincovid19 AT schulzsusanne impairedketogenesistiesmetabolismtotcelldysfunctionincovid19 AT alburcu impairedketogenesistiesmetabolismtotcelldysfunctionincovid19 AT seeligerbenjamin impairedketogenesistiesmetabolismtotcelldysfunctionincovid19 AT weltetobias impairedketogenesistiesmetabolismtotcelldysfunctionincovid19 AT davidsascha impairedketogenesistiesmetabolismtotcelldysfunctionincovid19 AT grondmaninge impairedketogenesistiesmetabolismtotcelldysfunctionincovid19 AT denooijeralineh impairedketogenesistiesmetabolismtotcelldysfunctionincovid19 AT pickkerspeter impairedketogenesistiesmetabolismtotcelldysfunctionincovid19 AT kleinerjanlukas impairedketogenesistiesmetabolismtotcelldysfunctionincovid19 AT bergermarcmoritz impairedketogenesistiesmetabolismtotcelldysfunctionincovid19 AT brennerthorsten impairedketogenesistiesmetabolismtotcelldysfunctionincovid19 AT putensenchristian impairedketogenesistiesmetabolismtotcelldysfunctionincovid19 AT impairedketogenesistiesmetabolismtotcelldysfunctionincovid19 AT katohiroki impairedketogenesistiesmetabolismtotcelldysfunctionincovid19 AT garbinatalio impairedketogenesistiesmetabolismtotcelldysfunctionincovid19 AT neteamihaig impairedketogenesistiesmetabolismtotcelldysfunctionincovid19 AT hillerkarsten impairedketogenesistiesmetabolismtotcelldysfunctionincovid19 AT placekkatarzyna impairedketogenesistiesmetabolismtotcelldysfunctionincovid19 AT bodechristian impairedketogenesistiesmetabolismtotcelldysfunctionincovid19 AT wilhelmchristoph impairedketogenesistiesmetabolismtotcelldysfunctionincovid19 |