Cargando…
Transcriptome sequencing and gas chromatography–mass spectrometry analyses provide insights into β-caryophyllene biosynthesis in Brassica campestris
Sesquiterpenes are important defensive secondary metabolites and aroma components. However, limited information is available on the mechanism of sesquiterpene formation and composition in the non-heading Chinese cabbage (NHCC) leaf. Therefore, headspace solid-phase microextraction/gas chromatography...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9428917/ https://www.ncbi.nlm.nih.gov/pubmed/36060474 http://dx.doi.org/10.1016/j.fochms.2022.100129 |
Sumario: | Sesquiterpenes are important defensive secondary metabolites and aroma components. However, limited information is available on the mechanism of sesquiterpene formation and composition in the non-heading Chinese cabbage (NHCC) leaf. Therefore, headspace solid-phase microextraction/gas chromatography–mass spectrometry (HS-SPME/GC–MS) combined with transcriptome analysis was used to study the mechanism of volatile organic compound formation. A total of 26 volatile organic compounds were identified in two NHCC cultivars ‘SZQ’ and ‘XQC’ and their F1 hybrids. Among these, sesquiterpene β-caryophyllene was identified only in ‘XQC’ and F1. Five genes encoding caryophyllene synthase were identified. The candidate β-caryophyllene synthase genes BcTPSa11 and BcTPSa21 had high expression levels only in ‘XQC’ and F1. In addition, several transcription factors of MYB-related, MYB, bHLH, and AP2/ERF families were identified by co-expression, suggesting that they regulate β-caryophyllene biosynthesis. Our results provide a molecular basis for sesquiterpene biosynthesis as well as insights into the regulatory network of β-caryophyllene in NHCC. |
---|