Cargando…
P1732: EVALUATION OF A DIGITAL SYSTEM LEVERAGING MOBILE TECHNOLOGY AND ARTIFICIAL INTELLIGENCE FOR DIGITALIZATION, REMOTE ANALYSIS AND SUPPORTED DIFFERENTIAL CELL COUNT OF BONE MARROW ASPIRATES.
Autores principales: | Martínez López, J., Rueda Charro, S., Bermejo Peláez, D., Mousa Urbina, A., Trelles Martínez, R., García Roa, M., Bobes Fernández, A., Hidalgo Soto, M., Morales Fernández, M. L., Ortiz Ruiz, A., Rodríguez García, A., García Vicente, R., Blanco Sánchez, A., Ayala Diaz, R., Lin, L., Álamo García-Donas, E., Dacal Picazo, E., Luengo Oroz, M., Linares Gómez, M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9429000/ http://dx.doi.org/10.1097/01.HS9.0000849784.81196.96 |
Ejemplares similares
-
Digital Platform for Automatic Qualitative and Quantitative Reading of a Cryptococcal Antigen Point-of-Care Assay Leveraging Smartphones and Artificial Intelligence
por: Bermejo-Peláez, David, et al.
Publicado: (2023) -
Remote analysis of sputum smears for mycobacterium tuberculosis quantification using digital crowdsourcing
por: Delgado, Lara García, et al.
Publicado: (2022) -
1732P Prognostic indicators for COVID-19 related deaths in patients with cancer
por: Linehan, A., et al.
Publicado: (2020) -
1732 13-years of Tuberculosis in the St. Bernard Parish, Louisiana
por: Mirani, Gayatri, et al.
Publicado: (2014) -
Mobile microscopy and telemedicine platform assisted by deep learning for the quantification of Trichuris trichiura infection
por: Dacal, Elena, et al.
Publicado: (2021)