Cargando…
Deep learning models fail to capture the configural nature of human shape perception
A hallmark of human object perception is sensitivity to the holistic configuration of the local shape features of an object. Deep convolutional neural networks (DCNNs) are currently the dominant models for object recognition processing in the visual cortex, but do they capture this configural sensit...
Autores principales: | Baker, Nicholas, Elder, James H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9429800/ https://www.ncbi.nlm.nih.gov/pubmed/36060067 http://dx.doi.org/10.1016/j.isci.2022.104913 |
Ejemplares similares
-
Configural relations in humans and deep convolutional neural networks
por: Baker, Nicholas, et al.
Publicado: (2023) -
Capturing human categorization of natural images by combining deep networks and cognitive models
por: Battleday, Ruairidh M., et al.
Publicado: (2020) -
Configuration mixing and total muon capture rates
por: Bernabeu, J, et al.
Publicado: (1973) -
Dyslexia and configural perception of character sequences
por: Houpt, Joseph W., et al.
Publicado: (2015) -
Trap Configuration and Spacing Influences Parameter Estimates in Spatial Capture-Recapture Models
por: Sun, Catherine C., et al.
Publicado: (2014)