Cargando…

Transitory Shifts in Skin Microbiota Composition and Reductions in Bacterial Load and Psoriasin following Ethanol Perturbation

Personal care and hygiene regimens may substantially alter the composition of the skin microbiota through direct and indirect mechanisms. An understanding of the timescales of commensal skin microbiota reestablishment following perturbation is required to inform consumer safety risk assessment, and...

Descripción completa

Detalles Bibliográficos
Autores principales: Saville, Charis R., Metris, Aline, Humphreys, Gavin J., O’Neill, Catherine, Barrett, Paul, Fernandez-Piquer, Judith, McBain, Andrew J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9429936/
https://www.ncbi.nlm.nih.gov/pubmed/35727021
http://dx.doi.org/10.1128/msphere.00171-22
Descripción
Sumario:Personal care and hygiene regimens may substantially alter the composition of the skin microbiota through direct and indirect mechanisms. An understanding of the timescales of commensal skin microbiota reestablishment following perturbation is required to inform consumer safety risk assessment, and support product development. In the current investigation, the microbiota of the volar and dorsal forearm of 10 volunteers was sampled immediately before and after wiping with 70% ethanol and at up to 24 h afterwards. Quantitative PCR and amplicon sequencing were used to measure microbial load and composition, and concentrations of the antimicrobial peptide psoriasin were measured using an enzyme-linked immunosorbent assay (ELISA). Ethanol wiping significantly reduced the total bacterial abundance at 2 h post-wipe. Recovery was observed after 6 h for total bacterial populations and for Staphylococcus epidermidis depending on the site tested. Microbiome diversity recovered by 6 h after wiping. Psoriasin concentrations were highly variable between volunteers, ranging from 42 to 1,569 ng/mL, and dorsal concentrations were significantly higher than volar concentrations (P < 0.05). For most of the volunteers, the application of ethanol decreased psoriasin concentrations, particularly for the dorsal samples, but the overall effect was not significant. This work extends observations of skin microbiome stability and demonstrates resilience in a key antimicrobial peptide. IMPORTANCE An understanding of the timescales of commensal skin microbiota reestablishment following perturbation is required to inform consumer safety risk assessment and support product development. Following ethanol exposure, total bacterial populations and microbiome diversity recovered after 6 h. For most of the volunteers, the application of ethanol decreased psoriasin concentrations, but the overall effect was not significant. This work extends observations of skin microbiome stability and demonstrates resilience in a key antimicrobial peptide.