Cargando…
Goblet Cell Hyperplasia Increases SARS-CoV-2 Infection in Chronic Obstructive Pulmonary Disease
Chronic obstructive pulmonary disease (COPD) is one of the underlying conditions in adults of any age that place them at risk for developing severe illnesses associated with COVID-19. To determine whether SARS-CoV-2’s cellular tropism plays a critical role in severe pathophysiology in the lung, we i...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9430117/ https://www.ncbi.nlm.nih.gov/pubmed/35862971 http://dx.doi.org/10.1128/spectrum.00459-22 |
_version_ | 1784779663875244032 |
---|---|
author | Osan, Jaspreet Talukdar, Sattya N. Feldmann, Friederike DeMontigny, Beth Ann Jerome, Kailey Bailey, Kristina L. Feldmann, Heinz Mehedi, Masfique |
author_facet | Osan, Jaspreet Talukdar, Sattya N. Feldmann, Friederike DeMontigny, Beth Ann Jerome, Kailey Bailey, Kristina L. Feldmann, Heinz Mehedi, Masfique |
author_sort | Osan, Jaspreet |
collection | PubMed |
description | Chronic obstructive pulmonary disease (COPD) is one of the underlying conditions in adults of any age that place them at risk for developing severe illnesses associated with COVID-19. To determine whether SARS-CoV-2’s cellular tropism plays a critical role in severe pathophysiology in the lung, we investigated its host cell entry receptor distribution in the bronchial airway epithelium of healthy adults and high-risk adults (those with COPD). We found that SARS-CoV-2 preferentially infects goblet cells in the bronchial airway epithelium, as mostly goblet cells harbor the entry receptor angiotensin-converting enzyme 2 (ACE2) and its cofactor transmembrane serine protease 2 (TMPRSS2). We also found that SARS-CoV-2 replication was substantially increased in the COPD bronchial airway epithelium, likely due to COPD-associated goblet cell hyperplasia. Likewise, SARS-CoV and Middle East respiratory syndrome (MERS-CoV) infection increased disease pathophysiology (e.g., syncytium formation) in the COPD bronchial airway epithelium. Our results reveal that goblet cells play a critical role in SARS-CoV-2-induced pathophysiology in the lung. IMPORTANCE SARS-CoV-2 or COVID-19’s first case was discovered in December 2019 in Wuhan, China, and by March 2020 it was declared a pandemic by the WHO. It has been shown that various underlying conditions can increase the chance of having severe COVID-19. COPD, which is the third leading cause of death worldwide, is one of the conditions listed by the CDC which can increase the chance of severe COVID-19. The present study uses a healthy and COPD-derived bronchial airway epithelial model to study the COVID-19 and host factors which could explain the reason for COPD patients developing severe infection due to COVID-19. |
format | Online Article Text |
id | pubmed-9430117 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-94301172022-09-01 Goblet Cell Hyperplasia Increases SARS-CoV-2 Infection in Chronic Obstructive Pulmonary Disease Osan, Jaspreet Talukdar, Sattya N. Feldmann, Friederike DeMontigny, Beth Ann Jerome, Kailey Bailey, Kristina L. Feldmann, Heinz Mehedi, Masfique Microbiol Spectr Research Article Chronic obstructive pulmonary disease (COPD) is one of the underlying conditions in adults of any age that place them at risk for developing severe illnesses associated with COVID-19. To determine whether SARS-CoV-2’s cellular tropism plays a critical role in severe pathophysiology in the lung, we investigated its host cell entry receptor distribution in the bronchial airway epithelium of healthy adults and high-risk adults (those with COPD). We found that SARS-CoV-2 preferentially infects goblet cells in the bronchial airway epithelium, as mostly goblet cells harbor the entry receptor angiotensin-converting enzyme 2 (ACE2) and its cofactor transmembrane serine protease 2 (TMPRSS2). We also found that SARS-CoV-2 replication was substantially increased in the COPD bronchial airway epithelium, likely due to COPD-associated goblet cell hyperplasia. Likewise, SARS-CoV and Middle East respiratory syndrome (MERS-CoV) infection increased disease pathophysiology (e.g., syncytium formation) in the COPD bronchial airway epithelium. Our results reveal that goblet cells play a critical role in SARS-CoV-2-induced pathophysiology in the lung. IMPORTANCE SARS-CoV-2 or COVID-19’s first case was discovered in December 2019 in Wuhan, China, and by March 2020 it was declared a pandemic by the WHO. It has been shown that various underlying conditions can increase the chance of having severe COVID-19. COPD, which is the third leading cause of death worldwide, is one of the conditions listed by the CDC which can increase the chance of severe COVID-19. The present study uses a healthy and COPD-derived bronchial airway epithelial model to study the COVID-19 and host factors which could explain the reason for COPD patients developing severe infection due to COVID-19. American Society for Microbiology 2022-07-13 /pmc/articles/PMC9430117/ /pubmed/35862971 http://dx.doi.org/10.1128/spectrum.00459-22 Text en https://doi.org/10.1128/AuthorWarrantyLicense.v1This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply. |
spellingShingle | Research Article Osan, Jaspreet Talukdar, Sattya N. Feldmann, Friederike DeMontigny, Beth Ann Jerome, Kailey Bailey, Kristina L. Feldmann, Heinz Mehedi, Masfique Goblet Cell Hyperplasia Increases SARS-CoV-2 Infection in Chronic Obstructive Pulmonary Disease |
title | Goblet Cell Hyperplasia Increases SARS-CoV-2 Infection in Chronic Obstructive Pulmonary Disease |
title_full | Goblet Cell Hyperplasia Increases SARS-CoV-2 Infection in Chronic Obstructive Pulmonary Disease |
title_fullStr | Goblet Cell Hyperplasia Increases SARS-CoV-2 Infection in Chronic Obstructive Pulmonary Disease |
title_full_unstemmed | Goblet Cell Hyperplasia Increases SARS-CoV-2 Infection in Chronic Obstructive Pulmonary Disease |
title_short | Goblet Cell Hyperplasia Increases SARS-CoV-2 Infection in Chronic Obstructive Pulmonary Disease |
title_sort | goblet cell hyperplasia increases sars-cov-2 infection in chronic obstructive pulmonary disease |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9430117/ https://www.ncbi.nlm.nih.gov/pubmed/35862971 http://dx.doi.org/10.1128/spectrum.00459-22 |
work_keys_str_mv | AT osanjaspreet gobletcellhyperplasiaincreasessarscov2infectioninchronicobstructivepulmonarydisease AT talukdarsattyan gobletcellhyperplasiaincreasessarscov2infectioninchronicobstructivepulmonarydisease AT feldmannfriederike gobletcellhyperplasiaincreasessarscov2infectioninchronicobstructivepulmonarydisease AT demontignybethann gobletcellhyperplasiaincreasessarscov2infectioninchronicobstructivepulmonarydisease AT jeromekailey gobletcellhyperplasiaincreasessarscov2infectioninchronicobstructivepulmonarydisease AT baileykristinal gobletcellhyperplasiaincreasessarscov2infectioninchronicobstructivepulmonarydisease AT feldmannheinz gobletcellhyperplasiaincreasessarscov2infectioninchronicobstructivepulmonarydisease AT mehedimasfique gobletcellhyperplasiaincreasessarscov2infectioninchronicobstructivepulmonarydisease |