Cargando…
PB1800: DEEPDECON: A DEEP-LEARNING METHOD FOR DETECTING MINIMAL RESIDUAL DISEASE OF ACUTE MYELOID LEUKEMIA
Autores principales: | Zhong, J., Stucky, A., Sun, F., Huang, J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9430591/ http://dx.doi.org/10.1097/01.HS9.0000850052.30084.5a |
Ejemplares similares
-
PB1767: CHALLENGES IN MACHINE LEARNING-BASED DETECTION OF MEASURABLE RESIDUAL DISEASE IN PATIENTS WITH ACUTE MYELOID LEUKEMIA
por: Thielecke, Lars, et al.
Publicado: (2023) -
PB1800: CLINICAL CHARACTERISTICS AND MUTATION LANDSCAPE OF TRISOMY AML
por: Lam, Stephen S Y, et al.
Publicado: (2023) -
PB2447: PREEMPTIVE TREATMENT WITH PD-1 ANTIBODY FOR ACUTE MYELOID LEUKEMIA/MYELODYSPLASTIC SYNDROME WITH POSITIVE MINIMAL RESIDUAL DISEASE AFTER ALLOGENEIC HEMATOPOIETIC STEM CELL TRANSPLANTATION
por: MA, Ling, et al.
Publicado: (2023) -
PB1897: DISCONTINUATION OF IMATINIB IN PATIENTS FOLLOWED FOR CHRONIC MYELOID LEUKEMIA IN DEEP MOLECULAR RESPONSE
por: Bouchakor Moussa, Y., et al.
Publicado: (2022) -
PB1910: CHRONIC MYELOID LEUKEMIA AND RELATIONSHIP TO SECONDARY SOLID NEOPLASMS
por: Ramos, M. J., et al.
Publicado: (2022)