Cargando…
RG203KR Mutations in SARS-CoV-2 Nucleocapsid: Assessing the Impact Using a Virus-Like Particle Model System
The emergence and evolution of SARS-CoV-2 is characterized by the occurrence of diverse sets of mutations that affect virus characteristics, including transmissibility and antigenicity. Recent studies have focused mostly on spike protein mutations; however, SARS-CoV-2 variants of interest (VoI) or c...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9430728/ https://www.ncbi.nlm.nih.gov/pubmed/35862952 http://dx.doi.org/10.1128/spectrum.00781-22 |
_version_ | 1784779855732146176 |
---|---|
author | Raheja, Harsha Das, Soma Banerjee, Anindita P., Dikshaya C., Deepika Mukhopadhyay, Debanjan Ramachandra, Subbaraya G. Das, Saumitra |
author_facet | Raheja, Harsha Das, Soma Banerjee, Anindita P., Dikshaya C., Deepika Mukhopadhyay, Debanjan Ramachandra, Subbaraya G. Das, Saumitra |
author_sort | Raheja, Harsha |
collection | PubMed |
description | The emergence and evolution of SARS-CoV-2 is characterized by the occurrence of diverse sets of mutations that affect virus characteristics, including transmissibility and antigenicity. Recent studies have focused mostly on spike protein mutations; however, SARS-CoV-2 variants of interest (VoI) or concern (VoC) contain significant mutations in the nucleocapsid protein as well. To study the relevance of mutations at the virion level, recombinant baculovirus expression system-based virus-like particles (VLPs) were generated for the prototype Wuhan sequence along with spike protein mutants like D614G and G1124V and the significant RG203KR mutation in nucleocapsid. All four structural proteins were assembled in a particle for which the morphology and size, confirmed by transmission electron microscopy, closely resembled that of the native virion. The VLP harboring RG203KR mutations in nucleocapsid exhibited augmentation of humoral immune responses and enhanced neutralization by immunized mouse sera. Results demonstrate a noninfectious platform to quickly assess the implication of mutations in structural proteins of the emerging variant. IMPORTANCE Since its origin in late 2019, the SARS-CoV-2 virus has been constantly mutating and evolving. Current studies mostly employ spike protein (S) pseudovirus systems to determine the effects of mutations on the infectivity and immunogenicity of variants. Despite its functional importance and emergence as a mutational hot spot, the nucleocapsid (N) protein has not been widely studied. The generation of SARS-CoV-2 VLPs in a baculoviral system in this study, with mutations in the S and N proteins, allowed examination of the involvement of all the structural proteins involved in viral entry and eliciting an immune response. This approach provides a platform to study the effect of mutations in structural proteins of SARS-CoV-2 that potentially contribute to cell infectivity, immune response, and immune evasion, bypassing the use of infectious virus for the same analyses. |
format | Online Article Text |
id | pubmed-9430728 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-94307282022-09-01 RG203KR Mutations in SARS-CoV-2 Nucleocapsid: Assessing the Impact Using a Virus-Like Particle Model System Raheja, Harsha Das, Soma Banerjee, Anindita P., Dikshaya C., Deepika Mukhopadhyay, Debanjan Ramachandra, Subbaraya G. Das, Saumitra Microbiol Spectr Research Article The emergence and evolution of SARS-CoV-2 is characterized by the occurrence of diverse sets of mutations that affect virus characteristics, including transmissibility and antigenicity. Recent studies have focused mostly on spike protein mutations; however, SARS-CoV-2 variants of interest (VoI) or concern (VoC) contain significant mutations in the nucleocapsid protein as well. To study the relevance of mutations at the virion level, recombinant baculovirus expression system-based virus-like particles (VLPs) were generated for the prototype Wuhan sequence along with spike protein mutants like D614G and G1124V and the significant RG203KR mutation in nucleocapsid. All four structural proteins were assembled in a particle for which the morphology and size, confirmed by transmission electron microscopy, closely resembled that of the native virion. The VLP harboring RG203KR mutations in nucleocapsid exhibited augmentation of humoral immune responses and enhanced neutralization by immunized mouse sera. Results demonstrate a noninfectious platform to quickly assess the implication of mutations in structural proteins of the emerging variant. IMPORTANCE Since its origin in late 2019, the SARS-CoV-2 virus has been constantly mutating and evolving. Current studies mostly employ spike protein (S) pseudovirus systems to determine the effects of mutations on the infectivity and immunogenicity of variants. Despite its functional importance and emergence as a mutational hot spot, the nucleocapsid (N) protein has not been widely studied. The generation of SARS-CoV-2 VLPs in a baculoviral system in this study, with mutations in the S and N proteins, allowed examination of the involvement of all the structural proteins involved in viral entry and eliciting an immune response. This approach provides a platform to study the effect of mutations in structural proteins of SARS-CoV-2 that potentially contribute to cell infectivity, immune response, and immune evasion, bypassing the use of infectious virus for the same analyses. American Society for Microbiology 2022-07-06 /pmc/articles/PMC9430728/ /pubmed/35862952 http://dx.doi.org/10.1128/spectrum.00781-22 Text en Copyright © 2022 Raheja et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Raheja, Harsha Das, Soma Banerjee, Anindita P., Dikshaya C., Deepika Mukhopadhyay, Debanjan Ramachandra, Subbaraya G. Das, Saumitra RG203KR Mutations in SARS-CoV-2 Nucleocapsid: Assessing the Impact Using a Virus-Like Particle Model System |
title | RG203KR Mutations in SARS-CoV-2 Nucleocapsid: Assessing the Impact Using a Virus-Like Particle Model System |
title_full | RG203KR Mutations in SARS-CoV-2 Nucleocapsid: Assessing the Impact Using a Virus-Like Particle Model System |
title_fullStr | RG203KR Mutations in SARS-CoV-2 Nucleocapsid: Assessing the Impact Using a Virus-Like Particle Model System |
title_full_unstemmed | RG203KR Mutations in SARS-CoV-2 Nucleocapsid: Assessing the Impact Using a Virus-Like Particle Model System |
title_short | RG203KR Mutations in SARS-CoV-2 Nucleocapsid: Assessing the Impact Using a Virus-Like Particle Model System |
title_sort | rg203kr mutations in sars-cov-2 nucleocapsid: assessing the impact using a virus-like particle model system |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9430728/ https://www.ncbi.nlm.nih.gov/pubmed/35862952 http://dx.doi.org/10.1128/spectrum.00781-22 |
work_keys_str_mv | AT rahejaharsha rg203krmutationsinsarscov2nucleocapsidassessingtheimpactusingaviruslikeparticlemodelsystem AT dassoma rg203krmutationsinsarscov2nucleocapsidassessingtheimpactusingaviruslikeparticlemodelsystem AT banerjeeanindita rg203krmutationsinsarscov2nucleocapsidassessingtheimpactusingaviruslikeparticlemodelsystem AT pdikshaya rg203krmutationsinsarscov2nucleocapsidassessingtheimpactusingaviruslikeparticlemodelsystem AT cdeepika rg203krmutationsinsarscov2nucleocapsidassessingtheimpactusingaviruslikeparticlemodelsystem AT mukhopadhyaydebanjan rg203krmutationsinsarscov2nucleocapsidassessingtheimpactusingaviruslikeparticlemodelsystem AT ramachandrasubbarayag rg203krmutationsinsarscov2nucleocapsidassessingtheimpactusingaviruslikeparticlemodelsystem AT dassaumitra rg203krmutationsinsarscov2nucleocapsidassessingtheimpactusingaviruslikeparticlemodelsystem |