Cargando…

In Vitro Activity of New β-Lactam–β-Lactamase Inhibitor Combinations and Comparators against Clinical Isolates of Gram-Negative Bacilli: Results from the China Antimicrobial Surveillance Network (CHINET) in 2019

Novel β-lactam–β-lactamase inhibitor combinations (BLBLIs) are in clinical development for the treatment of infections caused by carbapenem-resistant and difficult-to-treat resistant (DTR) (defined as resistance to all tested β-lactams and fluoroquinolones) Gram-negative bacilli. This study evaluate...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Yan, Han, Renru, Jiang, Bo, Ding, Li, Yang, Fengzhen, Zheng, Beijia, Yang, Yang, Wu, Shi, Yin, Dandan, Zhu, Demei, Hu, Fupin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9431184/
https://www.ncbi.nlm.nih.gov/pubmed/35862963
http://dx.doi.org/10.1128/spectrum.01854-22
Descripción
Sumario:Novel β-lactam–β-lactamase inhibitor combinations (BLBLIs) are in clinical development for the treatment of infections caused by carbapenem-resistant and difficult-to-treat resistant (DTR) (defined as resistance to all tested β-lactams and fluoroquinolones) Gram-negative bacilli. This study evaluated the in vitro activities of cefepime-zidebactam, ceftazidime-avibactam, cefepime-tazobactam, ceftolozane-tazobactam, and other comparators against 4,042 nonduplicate Gram-negative clinical isolates collected from different regions of China (46 hospitals) in 2019. Based on the pharmacokinetic-pharmacodynamic (PK-PD) breakpoints, cefepime-zidebactam inhibited 98.5% of Enterobacterales and 98.9% of Pseudomonas aeruginosa isolates, respectively. Against carbapenem-resistant and difficult-to-treat resistant Gram-negative bacilli, cefepime-zidebactam demonstrated better activity against Enterobacterales (96% and 97.2%, respectively) and P. aeruginosa (98.2% and 96.9%, respectively). Among the 379 carbapenem-resistant Enterobacterales isolates, the most common carbapenemase genes detected were bla(KPC-2) (64.1%) and bla(NDM) (30.9%). Cefepime-zidebactam showed an MIC(90) of ≤2 mg/L for 98.8% of bla(KPC)-positive isolates and 89.7% of bla(NDM)-positive isolates. Ceftazidime-avibactam also showed efficient in vitro activity against Enterobacterales (93.6%) and P. aeruginosa (87.7%). Ceftazidime-avibactam was active against 97.5% of bla(KPC)-positive isolates and 100% of bla(OXA-232)-positive isolates. Cefepime-zidebactam inhibited 97.3% of Acinetobacter baumannii isolates with an MIC(50/90) of 16/32 mg/L. Our study systematically evaluated the in vitro activities of these new BLBLIs against a variety of Gram-negative bacilli, provided preclinical data for the approval of these BLBLIs in China, and supported cefepime-zidebactam and ceftazidime-avibactam as potential efficient therapies for infections caused by carbapenem-resistant Enterobacterales (CRE), carbapenem-resistant P. aeruginosa (CRPA), and DTR isolates. IMPORTANCE Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter baumannii are the most common Gram-negative bacilli to cause nosocomial infections throughout the world. Due to their large public health and societal implications, carbapenem-resistant A. baumannii (CRAB), carbapenem-resistant P. aeruginosa (CRPA), and carbapenem-resistant and third-generation-cephalosporin-resistant Enterobacteriaceae were regarded by the World Health Organization (WHO) as a global priority for investment in new drugs in 2017. The present study showed the potent in vitro activity of these novel BLBLIs and other comparators against Gram-negative bacillus isolates, including carbapenem-resistant or difficult-to-treat resistant phenotypes. Polymyxins, tigecycline, and ceftazidime-avibactam (except for bla(NDM)-positive isolates) were available for the treatment of infections caused by CRE isolates. Currently, cefepime-zidebactam and other BLBLIs have not yet been approved for use in China. Here, our study aimed to evaluate the in vitro activities of BLBLIs against Gram-negative bacillus isolates, especially CRE, before clinical use.