Cargando…
Engineering Pseudomonas putida To Produce Rhamnolipid Biosurfactants for Promoting Phenanthrene Biodegradation by a Two-Species Microbial Consortium
Polycyclic aromatic hydrocarbons (PAHs) are a group of organic contaminants that pose a significant environmental hazard. Phenanthrene is one of the model compounds for the study of biodegradation of PAHs. However, the biodegradation of phenanthrene is often limited by its low water solubility and d...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9431653/ https://www.ncbi.nlm.nih.gov/pubmed/35730952 http://dx.doi.org/10.1128/spectrum.00910-22 |
Sumario: | Polycyclic aromatic hydrocarbons (PAHs) are a group of organic contaminants that pose a significant environmental hazard. Phenanthrene is one of the model compounds for the study of biodegradation of PAHs. However, the biodegradation of phenanthrene is often limited by its low water solubility and dissolution rate. To overcome this limitation, we engineered a strain of Pseudomonas putida to produce rhamnolipid biosurfactants and thereby promote phenanthrene biodegradation by an engineered strain of Escherichia coli constructed previously in our lab. The E. coli-P. putida two-species consortium exhibited a synergistic effect of these two distinct organisms in degrading phenanthrene, resulting in an increase from 61.15 to 73.86% of the degradation ratio of 100 mg/L phenanthrene within 7 days. After additional optimization of the degradation conditions, the phenanthrene degradation ratio was improved to 85.73%. IMPORTANCE Polycyclic aromatic hydrocarbons (PAHs), which are recalcitrant, carcinogenic, and tend to bioaccumulate, are widespread and persistent environmental pollutants. Based on these characteristics, the U.S. Environmental Protection Agency has listed PAHs as priority contaminants. Although there are many methods to treat PAH pollution, these methods are mostly limited by the poor water solubility of PAHs, which is especially true for the biodegradation process. Recent evidence of PAH-contaminated sites suffering from increasingly severe impact has emerged. As a result, the need to degrade PAHs is becoming urgent. The significance of our study lies in the development of nonpathogenic strains of biosurfactant-producing Pseudomonas aeruginosa for promoting the degradation of phenanthrene by engineered Escherichia coli. |
---|