Cargando…

Remote ischemic preconditioning causes transient cell cycle arrest and renal protection by a NF-κB–dependent Sema5B pathway

Acute kidney injury increases morbidity and mortality, and previous studies have shown that remote ischemic preconditioning (RIPC) reduces the risk of acute kidney injury after cardiac surgery. RIPC increases urinary high mobility group box protein-1 (HMGB1) levels in patients, and this correlates w...

Descripción completa

Detalles Bibliográficos
Autores principales: Rossaint, Jan, Meersch, Melanie, Thomas, Katharina, Mersmann, Sina, Lehmann, Martin, Skupski, Jennifer, Tekath, Tobias, Rosenberger, Peter, Kellum, John A., Pavenstädt, Hermann, Zarbock, Alexander
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Clinical Investigation 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9431690/
https://www.ncbi.nlm.nih.gov/pubmed/35727636
http://dx.doi.org/10.1172/jci.insight.158523
_version_ 1784780124400386048
author Rossaint, Jan
Meersch, Melanie
Thomas, Katharina
Mersmann, Sina
Lehmann, Martin
Skupski, Jennifer
Tekath, Tobias
Rosenberger, Peter
Kellum, John A.
Pavenstädt, Hermann
Zarbock, Alexander
author_facet Rossaint, Jan
Meersch, Melanie
Thomas, Katharina
Mersmann, Sina
Lehmann, Martin
Skupski, Jennifer
Tekath, Tobias
Rosenberger, Peter
Kellum, John A.
Pavenstädt, Hermann
Zarbock, Alexander
author_sort Rossaint, Jan
collection PubMed
description Acute kidney injury increases morbidity and mortality, and previous studies have shown that remote ischemic preconditioning (RIPC) reduces the risk of acute kidney injury after cardiac surgery. RIPC increases urinary high mobility group box protein-1 (HMGB1) levels in patients, and this correlates with kidney protection. Here, we show that RIPC reduces renal ischemia-reperfusion injury and improves kidney function in mice. Mechanistically, RIPC increases HMGB1 levels in the plasma and urine, and HMGB1 binds to TLR4 on renal tubular epithelial cells, inducing transcriptomic modulation of renal tubular epithelial cells and providing renal protection, whereas TLR4 activation on nonrenal cells was shown to contribute to renal injury. This protection is mediated by activation of induction of AMPKα and NF-κB; this induction contributes to the upregulation of Sema5b, which triggers a transient, protective G(1) cell cycle arrest. In cardiac surgery patients at high risk for postoperative acute kidney injury, increased HMGB1 and Sema5b levels after RIPC were associated with renal protection after surgery. The results may help to develop future clinical treatment options for acute kidney injury.
format Online
Article
Text
id pubmed-9431690
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Society for Clinical Investigation
record_format MEDLINE/PubMed
spelling pubmed-94316902022-09-02 Remote ischemic preconditioning causes transient cell cycle arrest and renal protection by a NF-κB–dependent Sema5B pathway Rossaint, Jan Meersch, Melanie Thomas, Katharina Mersmann, Sina Lehmann, Martin Skupski, Jennifer Tekath, Tobias Rosenberger, Peter Kellum, John A. Pavenstädt, Hermann Zarbock, Alexander JCI Insight Research Article Acute kidney injury increases morbidity and mortality, and previous studies have shown that remote ischemic preconditioning (RIPC) reduces the risk of acute kidney injury after cardiac surgery. RIPC increases urinary high mobility group box protein-1 (HMGB1) levels in patients, and this correlates with kidney protection. Here, we show that RIPC reduces renal ischemia-reperfusion injury and improves kidney function in mice. Mechanistically, RIPC increases HMGB1 levels in the plasma and urine, and HMGB1 binds to TLR4 on renal tubular epithelial cells, inducing transcriptomic modulation of renal tubular epithelial cells and providing renal protection, whereas TLR4 activation on nonrenal cells was shown to contribute to renal injury. This protection is mediated by activation of induction of AMPKα and NF-κB; this induction contributes to the upregulation of Sema5b, which triggers a transient, protective G(1) cell cycle arrest. In cardiac surgery patients at high risk for postoperative acute kidney injury, increased HMGB1 and Sema5b levels after RIPC were associated with renal protection after surgery. The results may help to develop future clinical treatment options for acute kidney injury. American Society for Clinical Investigation 2022-07-22 /pmc/articles/PMC9431690/ /pubmed/35727636 http://dx.doi.org/10.1172/jci.insight.158523 Text en © 2022 Rossaint et al. https://creativecommons.org/licenses/by/4.0/This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
Rossaint, Jan
Meersch, Melanie
Thomas, Katharina
Mersmann, Sina
Lehmann, Martin
Skupski, Jennifer
Tekath, Tobias
Rosenberger, Peter
Kellum, John A.
Pavenstädt, Hermann
Zarbock, Alexander
Remote ischemic preconditioning causes transient cell cycle arrest and renal protection by a NF-κB–dependent Sema5B pathway
title Remote ischemic preconditioning causes transient cell cycle arrest and renal protection by a NF-κB–dependent Sema5B pathway
title_full Remote ischemic preconditioning causes transient cell cycle arrest and renal protection by a NF-κB–dependent Sema5B pathway
title_fullStr Remote ischemic preconditioning causes transient cell cycle arrest and renal protection by a NF-κB–dependent Sema5B pathway
title_full_unstemmed Remote ischemic preconditioning causes transient cell cycle arrest and renal protection by a NF-κB–dependent Sema5B pathway
title_short Remote ischemic preconditioning causes transient cell cycle arrest and renal protection by a NF-κB–dependent Sema5B pathway
title_sort remote ischemic preconditioning causes transient cell cycle arrest and renal protection by a nf-κb–dependent sema5b pathway
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9431690/
https://www.ncbi.nlm.nih.gov/pubmed/35727636
http://dx.doi.org/10.1172/jci.insight.158523
work_keys_str_mv AT rossaintjan remoteischemicpreconditioningcausestransientcellcyclearrestandrenalprotectionbyanfkbdependentsema5bpathway
AT meerschmelanie remoteischemicpreconditioningcausestransientcellcyclearrestandrenalprotectionbyanfkbdependentsema5bpathway
AT thomaskatharina remoteischemicpreconditioningcausestransientcellcyclearrestandrenalprotectionbyanfkbdependentsema5bpathway
AT mersmannsina remoteischemicpreconditioningcausestransientcellcyclearrestandrenalprotectionbyanfkbdependentsema5bpathway
AT lehmannmartin remoteischemicpreconditioningcausestransientcellcyclearrestandrenalprotectionbyanfkbdependentsema5bpathway
AT skupskijennifer remoteischemicpreconditioningcausestransientcellcyclearrestandrenalprotectionbyanfkbdependentsema5bpathway
AT tekathtobias remoteischemicpreconditioningcausestransientcellcyclearrestandrenalprotectionbyanfkbdependentsema5bpathway
AT rosenbergerpeter remoteischemicpreconditioningcausestransientcellcyclearrestandrenalprotectionbyanfkbdependentsema5bpathway
AT kellumjohna remoteischemicpreconditioningcausestransientcellcyclearrestandrenalprotectionbyanfkbdependentsema5bpathway
AT pavenstadthermann remoteischemicpreconditioningcausestransientcellcyclearrestandrenalprotectionbyanfkbdependentsema5bpathway
AT zarbockalexander remoteischemicpreconditioningcausestransientcellcyclearrestandrenalprotectionbyanfkbdependentsema5bpathway