Cargando…

The epigenetic reader PHF21B modulates murine social memory and synaptic plasticity–related genes

Synaptic dysfunction is a manifestation of several neurobehavioral and neurological disorders. A major therapeutic challenge lies in uncovering the upstream regulatory factors controlling synaptic processes. Plant homeodomain (PHD) finger proteins are epigenetic readers whose dysfunctions are implic...

Descripción completa

Detalles Bibliográficos
Autores principales: Chin, Eunice W.M., Ma, Qi, Ruan, Hongyu, Chin, Camille, Somasundaram, Aditya, Zhang, Chunling, Liu, Chunyu, Lewis, Martin D., White, Melissa, Smith, Tracey L., Battersby, Malcolm, Yao, Wei-Dong, Lu, Xin-Yun, Arap, Wadih, Licinio, Julio, Wong, Ma-Li
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Clinical Investigation 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9431697/
https://www.ncbi.nlm.nih.gov/pubmed/35866480
http://dx.doi.org/10.1172/jci.insight.158081
Descripción
Sumario:Synaptic dysfunction is a manifestation of several neurobehavioral and neurological disorders. A major therapeutic challenge lies in uncovering the upstream regulatory factors controlling synaptic processes. Plant homeodomain (PHD) finger proteins are epigenetic readers whose dysfunctions are implicated in neurological disorders. However, the molecular mechanisms linking PHD protein deficits to disease remain unclear. Here, we generated a PHD finger protein 21B–depleted (Phf21b-depleted) mutant CRISPR mouse model (hereafter called Phf21b(Δ4/Δ4)) to examine Phf21b’s roles in the brain. Phf21b(Δ4/Δ4) animals exhibited impaired social memory. In addition, reduced expression of synaptic proteins and impaired long-term potentiation were observed in the Phf21b(Δ4/Δ4) hippocampi. Transcriptome profiling revealed differential expression of genes involved in synaptic plasticity processes. Furthermore, we characterized a potentially novel interaction of PHF21B with histone H3 trimethylated lysine 36 (H3K36me3), a histone modification associated with transcriptional activation, and the transcriptional factor CREB. These results establish PHF21B as an important upstream regulator of synaptic plasticity–related genes and a candidate therapeutic target for neurobehavioral dysfunction in mice, with potential applications in human neurological and psychiatric disorders.