Cargando…
Strain-Specific Behavior of Mycobacterium tuberculosis in Interruption of Autophagy Pathway in Human Alveolar Type II Epithelial A549 Cells
BACKGROUND: Autophagy induction has been shown to differ in magnitude depending on the mycobacterial species. However, few studies have investigated the specific autophagic capacity of different Mtb strains in ATs. This study aimed to elucidate the host autophagic response to different Mtb strains i...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Pasteur Institute of Iran
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9432471/ https://www.ncbi.nlm.nih.gov/pubmed/36000264 http://dx.doi.org/10.52547/ibj.3586 |
_version_ | 1784780380761489408 |
---|---|
author | Ebrahimifard, Nasim Hadifar, Shima Kargarpour Kamakoli, Mansour Behrouzi, Ava Khanipour, Sharareh Fateh, Abolfazl Siadat, Seyed Davar Vaziri, Farzam |
author_facet | Ebrahimifard, Nasim Hadifar, Shima Kargarpour Kamakoli, Mansour Behrouzi, Ava Khanipour, Sharareh Fateh, Abolfazl Siadat, Seyed Davar Vaziri, Farzam |
author_sort | Ebrahimifard, Nasim |
collection | PubMed |
description | BACKGROUND: Autophagy induction has been shown to differ in magnitude depending on the mycobacterial species. However, few studies have investigated the specific autophagic capacity of different Mtb strains in ATs. This study aimed to elucidate the host autophagic response to different Mtb strains in ATs responsible for TB in the capital of Iran, Tehran. METHODS: A549 cells were infected with three different Mtb clinical isolates (Beijing, NEW1, and CAS1/Delhi) and the reference strain H37Rv. Following RNA extraction, the expression of eight ATG genes, four mycobacterial genes, and three miRNAs was evaluated using quantitative RT-PCR. RESULTS: The results revealed that all four strains influenced the autophagy pathway in various ways at different magnitudes. The Beijing and H37Rv strains could inhibit autophagosome formation, whereas the CAS and NEW1 strains induced autophagosome formation. The expression of genes involved in the fusion of autophagosomes to lysosomes (LAMP1) indicated that all the studied strains impaired the autophagolysosomal fusion; this result is not unexpected as Mtb can block the autophagolysomal fusion. In addition, the Beijing and H37RV strains prevented the formation of autophagic vacuoles, besides mycobacterial targeting of lysosomes and protease activity. CONCLUSION: This preliminary study improved our understanding of how Mtb manages to overcome the host immune system, such as autophagy, and evaluated the genes used by specific strains during this process. Further studies with a large number of Mtb strains, encompassing the other main Mtb lineages, are inevitable. |
format | Online Article Text |
id | pubmed-9432471 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Pasteur Institute of Iran |
record_format | MEDLINE/PubMed |
spelling | pubmed-94324712022-09-13 Strain-Specific Behavior of Mycobacterium tuberculosis in Interruption of Autophagy Pathway in Human Alveolar Type II Epithelial A549 Cells Ebrahimifard, Nasim Hadifar, Shima Kargarpour Kamakoli, Mansour Behrouzi, Ava Khanipour, Sharareh Fateh, Abolfazl Siadat, Seyed Davar Vaziri, Farzam Iran Biomed J Full Length BACKGROUND: Autophagy induction has been shown to differ in magnitude depending on the mycobacterial species. However, few studies have investigated the specific autophagic capacity of different Mtb strains in ATs. This study aimed to elucidate the host autophagic response to different Mtb strains in ATs responsible for TB in the capital of Iran, Tehran. METHODS: A549 cells were infected with three different Mtb clinical isolates (Beijing, NEW1, and CAS1/Delhi) and the reference strain H37Rv. Following RNA extraction, the expression of eight ATG genes, four mycobacterial genes, and three miRNAs was evaluated using quantitative RT-PCR. RESULTS: The results revealed that all four strains influenced the autophagy pathway in various ways at different magnitudes. The Beijing and H37Rv strains could inhibit autophagosome formation, whereas the CAS and NEW1 strains induced autophagosome formation. The expression of genes involved in the fusion of autophagosomes to lysosomes (LAMP1) indicated that all the studied strains impaired the autophagolysosomal fusion; this result is not unexpected as Mtb can block the autophagolysomal fusion. In addition, the Beijing and H37RV strains prevented the formation of autophagic vacuoles, besides mycobacterial targeting of lysosomes and protease activity. CONCLUSION: This preliminary study improved our understanding of how Mtb manages to overcome the host immune system, such as autophagy, and evaluated the genes used by specific strains during this process. Further studies with a large number of Mtb strains, encompassing the other main Mtb lineages, are inevitable. Pasteur Institute of Iran 2022-07 2022-08-24 /pmc/articles/PMC9432471/ /pubmed/36000264 http://dx.doi.org/10.52547/ibj.3586 Text en https://creativecommons.org/licenses/by/3.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License, (http://creativecommons.org/licenses/by/3.0/ (https://creativecommons.org/licenses/by/3.0/) ) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Full Length Ebrahimifard, Nasim Hadifar, Shima Kargarpour Kamakoli, Mansour Behrouzi, Ava Khanipour, Sharareh Fateh, Abolfazl Siadat, Seyed Davar Vaziri, Farzam Strain-Specific Behavior of Mycobacterium tuberculosis in Interruption of Autophagy Pathway in Human Alveolar Type II Epithelial A549 Cells |
title | Strain-Specific Behavior of Mycobacterium tuberculosis in Interruption of Autophagy Pathway in Human Alveolar Type II Epithelial A549 Cells |
title_full | Strain-Specific Behavior of Mycobacterium tuberculosis in Interruption of Autophagy Pathway in Human Alveolar Type II Epithelial A549 Cells |
title_fullStr | Strain-Specific Behavior of Mycobacterium tuberculosis in Interruption of Autophagy Pathway in Human Alveolar Type II Epithelial A549 Cells |
title_full_unstemmed | Strain-Specific Behavior of Mycobacterium tuberculosis in Interruption of Autophagy Pathway in Human Alveolar Type II Epithelial A549 Cells |
title_short | Strain-Specific Behavior of Mycobacterium tuberculosis in Interruption of Autophagy Pathway in Human Alveolar Type II Epithelial A549 Cells |
title_sort | strain-specific behavior of mycobacterium tuberculosis in interruption of autophagy pathway in human alveolar type ii epithelial a549 cells |
topic | Full Length |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9432471/ https://www.ncbi.nlm.nih.gov/pubmed/36000264 http://dx.doi.org/10.52547/ibj.3586 |
work_keys_str_mv | AT ebrahimifardnasim strainspecificbehaviorofmycobacteriumtuberculosisininterruptionofautophagypathwayinhumanalveolartypeiiepitheliala549cells AT hadifarshima strainspecificbehaviorofmycobacteriumtuberculosisininterruptionofautophagypathwayinhumanalveolartypeiiepitheliala549cells AT kargarpourkamakolimansour strainspecificbehaviorofmycobacteriumtuberculosisininterruptionofautophagypathwayinhumanalveolartypeiiepitheliala549cells AT behrouziava strainspecificbehaviorofmycobacteriumtuberculosisininterruptionofautophagypathwayinhumanalveolartypeiiepitheliala549cells AT khanipoursharareh strainspecificbehaviorofmycobacteriumtuberculosisininterruptionofautophagypathwayinhumanalveolartypeiiepitheliala549cells AT fatehabolfazl strainspecificbehaviorofmycobacteriumtuberculosisininterruptionofautophagypathwayinhumanalveolartypeiiepitheliala549cells AT siadatseyeddavar strainspecificbehaviorofmycobacteriumtuberculosisininterruptionofautophagypathwayinhumanalveolartypeiiepitheliala549cells AT vazirifarzam strainspecificbehaviorofmycobacteriumtuberculosisininterruptionofautophagypathwayinhumanalveolartypeiiepitheliala549cells |