Cargando…

Pickering emulsion stabilized by palm-pressed fiber cellulose nanocrystal extracted by acid hydrolysis-assisted high pressure homogenization

Palm pressed fibre (PPF) is a lignocellulose biomass generated from palm oil mill that is rich in cellulose. The present work aimed to combine acid hydrolysis followed by high-pressure homogenisation (HPH) to produce nanocrystal cellulose (CNC) with enhanced physicochemical properties from PPF. PPF...

Descripción completa

Detalles Bibliográficos
Autores principales: Ng, Shi-Wan, Chong, Wai-Ting, Soo, Yee-Theng, Tang, Teck-Kim, Ab Karim, Nur Azwani, Phuah, Eng-Tong, Lee, Yee-Ying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9432738/
https://www.ncbi.nlm.nih.gov/pubmed/36044467
http://dx.doi.org/10.1371/journal.pone.0271512
Descripción
Sumario:Palm pressed fibre (PPF) is a lignocellulose biomass generated from palm oil mill that is rich in cellulose. The present work aimed to combine acid hydrolysis followed by high-pressure homogenisation (HPH) to produce nanocrystal cellulose (CNC) with enhanced physicochemical properties from PPF. PPF was alkaline treated, bleached, acid hydrolysed and homogenised under high pressure condition to prepare CNC. The effects of homogenisation pressure (10, 30, 50, 70 MPa) and cycles (1, 3, 5, 7) on the particle size, zeta potential and rheological properties of CNC produced were investigated. HPH was capable of producing CNC with better stability. Results revealed that utilizing 1 cycle of homogenisation at a pressure of 50 MPa resulted in CNC with the smallest dimension, highest aspect ratio, moderate viscosity and exceptionally high zeta potential. Subsequently, 0.15% (CNC (0.15) -PE) and 0.30% (CNC (0.30) -PE) of CNC was used to stabilise oil-in-water emulsions and their stability was evaluated against different pH, temperature and ionic strength. All the CNC-stabilised emulsions demonstrated good thermal stability. CNC (0.30) -PE exhibited larger droplets but higher stability than CNC (0.15) -PE. In short, CNC with gel like structure has a promising potential to serve as a natural Pickering emulsifier to stabilise oil-in-water emulsion in various food applications.