Cargando…

Sphingosine-1-phosphate expression in human epiretinal membranes

The abnormal posterior vitreous detachment (PVD) is speculated as an important mechanism of the development of the epiretinal membrane (ERM). However, there is only limited information about the molecular mechanism. Sphingosine-1-phosphate (S1P) is a mediator of the mechanosensitive response in seve...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Minho, Kwon, Soonil, Jeon, Sohee, Jung, Byung Ju, Kim, Kyu Seop
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9432740/
https://www.ncbi.nlm.nih.gov/pubmed/36044534
http://dx.doi.org/10.1371/journal.pone.0273674
Descripción
Sumario:The abnormal posterior vitreous detachment (PVD) is speculated as an important mechanism of the development of the epiretinal membrane (ERM). However, there is only limited information about the molecular mechanism. Sphingosine-1-phosphate (S1P) is a mediator of the mechanosensitive response in several cell types that may have a role in the pathogenesis of ERM during abnormal PVD. Therefore, we evaluated the expression of S1P in the human ERM and the role of S1P in cultured human Muller glial cells. Among 24 ERM specimens, seven specimens (29.2%) exhibited S1P expression. Patients with secondary ERM or ellipsoid zone defects, which suggest abnormal PVD presented a significantly higher S1P+ cell density (secondary ERM: 128.20 ± 135.61 and 9.68 ± 36.01 cells, p = 0.002; EZ defects: 87.56 ± 117.79 vs 2.80 ± 8.85, p = 0.036). The addition of S1P increased the migrative ability and expression of N-cadherin and α-SMA in human Muller glial cells, suggesting S1P is a potential causative molecule for the development of ERM during abnormal PVD.