Cargando…

SOCS3 Attenuates Dexamethasone-Induced M2 Polarization by Down-Regulation of GILZ via ROS- and p38 MAPK-Dependent Pathways

Suppressors of cytokine signaling (SOCS) have emerged as potential regulators of macrophage function. We have investigated mechanisms of SOCS3 action on type 2 macrophage (M2) differentiation induced by glucocorticoid using human monocytic cell lines and mouse bone marrow-derived macrophages. Treatm...

Descripción completa

Detalles Bibliográficos
Autores principales: Jeong, Hana, Yoon, Hyeyoung, Lee, Yerin, Kim, Jun Tae, Yang, Moses, Kim, Gayoung, Jung, Bom, Park, Seok Hee, Lee, Choong-Eun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Korean Association of Immunologists 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9433193/
https://www.ncbi.nlm.nih.gov/pubmed/36081527
http://dx.doi.org/10.4110/in.2022.22.e33
Descripción
Sumario:Suppressors of cytokine signaling (SOCS) have emerged as potential regulators of macrophage function. We have investigated mechanisms of SOCS3 action on type 2 macrophage (M2) differentiation induced by glucocorticoid using human monocytic cell lines and mouse bone marrow-derived macrophages. Treatment of THP1 monocytic cells with dexamethasone (Dex) induced ROS generation and M2 polarization promoting IL-10 and TGF-β production, while suppressing IL-1β, TNF-α and IL-6 production. SOCS3 over-expression reduced, whereas SOCS3 ablation enhanced IL-10 and TGF-β induction with concomitant regulation of ROS. As a mediator of M2 differentiation, glucocorticoid-induced leucine zipper (GILZ) was down-regulated by SOCS3 and up-regulated by shSOCS3. The induction of GILZ and IL-10 by Dex was dependent on ROS and p38 MAPK activity. Importantly, GILZ ablation led to the inhibition of ROS generation and anti-inflammatory cytokine induction by Dex. Moreover, GILZ knock-down negated the up-regulation of IL-10 production induced by shSOCS3 transduction. Our data suggest that SOCS3 targets ROS- and p38-dependent GILZ expression to suppress Dex-induced M2 polarization.