Cargando…
Short-Term Load Forecasting Based on EEMD-WOA-LSTM Combination Model
The purpose of this study was to better apply artificial intelligence algorithm to load forecasting and effectively improve the forecasting accuracy. Based on the long short-term memory neural networks, a combined model based on whale bionic optimization is proposed for short-term load forecasting....
Autores principales: | Shao, Lei, Guo, Quanjie, Li, Chao, Li, Ji, Yan, Huilong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9433255/ https://www.ncbi.nlm.nih.gov/pubmed/36060556 http://dx.doi.org/10.1155/2022/2166082 |
Ejemplares similares
-
Can financial stress be anticipated and explained? Uncovering the hidden pattern using EEMD-LSTM, EEMD-prophet, and XAI methodologies
por: Ghosh, Indranil, et al.
Publicado: (2022) -
Multi-horizon short-term load forecasting using hybrid of LSTM and modified split convolution
por: Ullah, Irshad, et al.
Publicado: (2023) -
Improving the Efficiency of Multistep Short-Term Electricity Load Forecasting via R-CNN with ML-LSTM
por: Alsharekh, Mohammed F., et al.
Publicado: (2022) -
Improved WOA and its application in feature selection
por: Liu, Wei, et al.
Publicado: (2022) -
Short-Term Demand Forecast of E-Commerce Platform Based on ConvLSTM Network
por: Li, Zan, et al.
Publicado: (2022)