Cargando…

COVID-19 diagnosis via chest X-ray image classification based on multiscale class residual attention

Aiming at detecting COVID-19 effectively, a multiscale class residual attention (MCRA) network is proposed via chest X-ray (CXR) image classification. First, to overcome the data shortage and improve the robustness of our network, a pixel-level image mixing of local regions was introduced to achieve...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Shangwang, Cai, Tongbo, Tang, Xiufang, Zhang, Yangyang, Wang, Changgeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9433340/
https://www.ncbi.nlm.nih.gov/pubmed/36081225
http://dx.doi.org/10.1016/j.compbiomed.2022.106065
Descripción
Sumario:Aiming at detecting COVID-19 effectively, a multiscale class residual attention (MCRA) network is proposed via chest X-ray (CXR) image classification. First, to overcome the data shortage and improve the robustness of our network, a pixel-level image mixing of local regions was introduced to achieve data augmentation and reduce noise. Secondly, multi-scale fusion strategy was adopted to extract global contextual information at different scales and enhance semantic representation. Last but not least, class residual attention was employed to generate spatial attention for each class, which can avoid inter-class interference and enhance related features to further improve the COVID-19 detection. Experimental results show that our network achieves superior diagnostic performance on COVIDx dataset, and its accuracy, PPV, sensitivity, specificity and F1-score are 97.71%, 96.76%, 96.56%, 98.96% and 96.64%, respectively; moreover, the heat maps can endow our deep model with somewhat interpretability.