Cargando…

Asymptotic Posterior Normality of Multivariate Latent Traits in an IRT Model

The asymptotic posterior normality (APN) of the latent variable vector in an item response theory (IRT) model is a crucial argument in IRT modeling approaches. In case of a single latent trait and under general assumptions, Chang and Stout (Psychometrika, 58(1):37–52, 1993) proved the APN for a broa...

Descripción completa

Detalles Bibliográficos
Autores principales: Kornely, Mia J. K., Kateri, Maria
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9433366/
https://www.ncbi.nlm.nih.gov/pubmed/35149979
http://dx.doi.org/10.1007/s11336-021-09838-2
_version_ 1784780619120640000
author Kornely, Mia J. K.
Kateri, Maria
author_facet Kornely, Mia J. K.
Kateri, Maria
author_sort Kornely, Mia J. K.
collection PubMed
description The asymptotic posterior normality (APN) of the latent variable vector in an item response theory (IRT) model is a crucial argument in IRT modeling approaches. In case of a single latent trait and under general assumptions, Chang and Stout (Psychometrika, 58(1):37–52, 1993) proved the APN for a broad class of latent trait models for binary items. Under the same setup, they also showed the consistency of the latent trait’s maximum likelihood estimator (MLE). Since then, several modeling approaches have been developed that consider multivariate latent traits and assume their APN, a conjecture which has not been proved so far. We fill this theoretical gap by extending the results of Chang and Stout for multivariate latent traits. Further, we discuss the existence and consistency of MLEs, maximum a-posteriori and expected a-posteriori estimators for the latent traits under the same broad class of latent trait models. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11336-021-09838-2.
format Online
Article
Text
id pubmed-9433366
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Springer US
record_format MEDLINE/PubMed
spelling pubmed-94333662022-09-02 Asymptotic Posterior Normality of Multivariate Latent Traits in an IRT Model Kornely, Mia J. K. Kateri, Maria Psychometrika Theory and Methods The asymptotic posterior normality (APN) of the latent variable vector in an item response theory (IRT) model is a crucial argument in IRT modeling approaches. In case of a single latent trait and under general assumptions, Chang and Stout (Psychometrika, 58(1):37–52, 1993) proved the APN for a broad class of latent trait models for binary items. Under the same setup, they also showed the consistency of the latent trait’s maximum likelihood estimator (MLE). Since then, several modeling approaches have been developed that consider multivariate latent traits and assume their APN, a conjecture which has not been proved so far. We fill this theoretical gap by extending the results of Chang and Stout for multivariate latent traits. Further, we discuss the existence and consistency of MLEs, maximum a-posteriori and expected a-posteriori estimators for the latent traits under the same broad class of latent trait models. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11336-021-09838-2. Springer US 2022-02-11 2022 /pmc/articles/PMC9433366/ /pubmed/35149979 http://dx.doi.org/10.1007/s11336-021-09838-2 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Theory and Methods
Kornely, Mia J. K.
Kateri, Maria
Asymptotic Posterior Normality of Multivariate Latent Traits in an IRT Model
title Asymptotic Posterior Normality of Multivariate Latent Traits in an IRT Model
title_full Asymptotic Posterior Normality of Multivariate Latent Traits in an IRT Model
title_fullStr Asymptotic Posterior Normality of Multivariate Latent Traits in an IRT Model
title_full_unstemmed Asymptotic Posterior Normality of Multivariate Latent Traits in an IRT Model
title_short Asymptotic Posterior Normality of Multivariate Latent Traits in an IRT Model
title_sort asymptotic posterior normality of multivariate latent traits in an irt model
topic Theory and Methods
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9433366/
https://www.ncbi.nlm.nih.gov/pubmed/35149979
http://dx.doi.org/10.1007/s11336-021-09838-2
work_keys_str_mv AT kornelymiajk asymptoticposteriornormalityofmultivariatelatenttraitsinanirtmodel
AT katerimaria asymptoticposteriornormalityofmultivariatelatenttraitsinanirtmodel