Cargando…
Beyond the Mean: A Flexible Framework for Studying Causal Effects Using Linear Models
Graph-based causal models are a flexible tool for causal inference from observational data. In this paper, we develop a comprehensive framework to define, identify, and estimate a broad class of causal quantities in linearly parametrized graph-based models. The proposed method extends the literature...
Autores principales: | Gische, Christian, Voelkle, Manuel C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9433367/ https://www.ncbi.nlm.nih.gov/pubmed/34894340 http://dx.doi.org/10.1007/s11336-021-09811-z |
Ejemplares similares
-
Forecasting Causal Effects of Interventions versus Predicting Future Outcomes
por: Gische, Christian, et al.
Publicado: (2021) -
A Causal Framework for Non-Linear Quantum Mechanics
por: Rajendran, Surjeet
Publicado: (2023) -
Marginal measures and causal effects using the relative survival framework
por: Syriopoulou, Elisavet, et al.
Publicado: (2020) -
Fitting and Testing Log-Linear Subpopulation Models with Known Support
por: Hessen, David J.
Publicado: (2023) -
Reliability Beyond Theory and Into Practice
por: Sijtsma, Klaas
Publicado: (2008)