Cargando…
Data augmentation strategies for EEG-based motor imagery decoding
The wide use of motor imagery as a paradigm for brain-computer interfacing (BCI) points to its characteristic ability to generate discriminatory signals for communication and control. In recent times, deep learning techniques have increasingly been explored, in motor imagery decoding. While deep lea...
Autores principales: | George, Olawunmi, Smith, Roger, Madiraju, Praveen, Yahyasoltani, Nasim, Ahamed, Sheikh Iqbal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9433610/ https://www.ncbi.nlm.nih.gov/pubmed/36060998 http://dx.doi.org/10.1016/j.heliyon.2022.e10240 |
Ejemplares similares
-
Multi-Class Motor Imagery EEG Decoding for Brain-Computer Interfaces
por: Wang, Deng, et al.
Publicado: (2012) -
Across-subject offline decoding of motor imagery from MEG and EEG
por: Halme, Hanna-Leena, et al.
Publicado: (2018) -
A Decoding Scheme for Incomplete Motor Imagery EEG With Deep Belief Network
por: Chu, Yaqi, et al.
Publicado: (2018) -
Conditional Adversarial Domain Adaptation Neural Network for Motor Imagery EEG Decoding
por: Tang, Xingliang, et al.
Publicado: (2020) -
Classification of Motor Imagery EEG Signals Based on Data Augmentation and Convolutional Neural Networks
por: Xie, Yu, et al.
Publicado: (2023)