Cargando…
Machine learning for lymph node metastasis prediction of in patients with gastric cancer: A systematic review and meta-analysis
OBJECTIVE: To evaluate the diagnostic performance of machine learning (ML) in predicting lymph node metastasis (LNM) in patients with gastric cancer (GC) and to identify predictors applicable to the models. METHODS: PubMed, EMBASE, Web of Science, and Cochrane Library were searched from inception to...
Autores principales: | Li, Yilin, Xie, Fengjiao, Xiong, Qin, Lei, Honglin, Feng, Peimin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9433672/ https://www.ncbi.nlm.nih.gov/pubmed/36059703 http://dx.doi.org/10.3389/fonc.2022.946038 |
Ejemplares similares
-
The safety of colorectal cancer surgery during the COVID-19: a systematic review and meta-analysis
por: Wang, Qiuxiang, et al.
Publicado: (2023) -
Machine Learning-Based Prediction of Lymph Node Metastasis Among Osteosarcoma Patients
por: Li, Wenle, et al.
Publicado: (2022) -
A retrospective analysis based on multiple machine learning models to predict lymph node metastasis in early gastric cancer
por: Yang, Tao, et al.
Publicado: (2022) -
Rare metastasis of gastric cancer to the axillary lymph node: A case report
por: Zhu, Qingshun, et al.
Publicado: (2022) -
Novel, alternative splicing signature to detect lymph node metastasis in prostate adenocarcinoma with machine learning
por: Xie, Ping, et al.
Publicado: (2023)