Cargando…
Diagnostic accuracy of deep learning for evaluation of C-spine injury from lateral neck radiographs
BACKGROUND: Traumatic spinal cord injury (TSI) is a leading cause of morbidity and mortality worldwide, with the cervical spine being the most affected. Delayed diagnosis carries a risk of morbidity and mortality. However, cervical spine CT scans are time-consuming, costly, and not always available...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9433686/ https://www.ncbi.nlm.nih.gov/pubmed/36061007 http://dx.doi.org/10.1016/j.heliyon.2022.e10372 |
_version_ | 1784780678187974656 |
---|---|
author | Boonrod, Arunnit Boonrod, Artit Meethawolgul, Atthaphon Twinprai, Prin |
author_facet | Boonrod, Arunnit Boonrod, Artit Meethawolgul, Atthaphon Twinprai, Prin |
author_sort | Boonrod, Arunnit |
collection | PubMed |
description | BACKGROUND: Traumatic spinal cord injury (TSI) is a leading cause of morbidity and mortality worldwide, with the cervical spine being the most affected. Delayed diagnosis carries a risk of morbidity and mortality. However, cervical spine CT scans are time-consuming, costly, and not always available in general care. In this study, deep learning was used to assess and improve the detection of cervical spine injuries on lateral radiographs, the most widely used screening method to help physicians triage patients quickly and avoid unnecessary CT scans. MATERIALS AND METHODS: Lateral neck or lateral cervical spine radiographs were obtained for patients who underwent CT scan of cervical spine. Ground truth was determined based on CT reports. CiRA CORE, a codeless deep learning program, was used as a training and testing platform. YOLO network models, including V2, V3, and V4, were trained to detect cervical spine injury. The diagnostic accuracy, sensitivity, and specificity of the model were calculated. RESULTS: A total of 229 radiographs (129 negative and 100 positive) were selected for inclusion in our study from a list of 625 patients with cervical spine CT scans, 181 (28.9%) of whom had cervical spine injury. The YOLO V4 model performed better than the V2 or V3 (AUC = 0.743), with sensitivity, specificity, and accuracy of 80%, 72% and 75% respectively. CONCLUSION: Deep learning can improve the accuracy of lateral c-spine or neck radiographs. We anticipate that this will assist clinicians in quickly triaging patients and help to minimize the number of unnecessary CT scans. |
format | Online Article Text |
id | pubmed-9433686 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-94336862022-09-02 Diagnostic accuracy of deep learning for evaluation of C-spine injury from lateral neck radiographs Boonrod, Arunnit Boonrod, Artit Meethawolgul, Atthaphon Twinprai, Prin Heliyon Research Article BACKGROUND: Traumatic spinal cord injury (TSI) is a leading cause of morbidity and mortality worldwide, with the cervical spine being the most affected. Delayed diagnosis carries a risk of morbidity and mortality. However, cervical spine CT scans are time-consuming, costly, and not always available in general care. In this study, deep learning was used to assess and improve the detection of cervical spine injuries on lateral radiographs, the most widely used screening method to help physicians triage patients quickly and avoid unnecessary CT scans. MATERIALS AND METHODS: Lateral neck or lateral cervical spine radiographs were obtained for patients who underwent CT scan of cervical spine. Ground truth was determined based on CT reports. CiRA CORE, a codeless deep learning program, was used as a training and testing platform. YOLO network models, including V2, V3, and V4, were trained to detect cervical spine injury. The diagnostic accuracy, sensitivity, and specificity of the model were calculated. RESULTS: A total of 229 radiographs (129 negative and 100 positive) were selected for inclusion in our study from a list of 625 patients with cervical spine CT scans, 181 (28.9%) of whom had cervical spine injury. The YOLO V4 model performed better than the V2 or V3 (AUC = 0.743), with sensitivity, specificity, and accuracy of 80%, 72% and 75% respectively. CONCLUSION: Deep learning can improve the accuracy of lateral c-spine or neck radiographs. We anticipate that this will assist clinicians in quickly triaging patients and help to minimize the number of unnecessary CT scans. Elsevier 2022-08-24 /pmc/articles/PMC9433686/ /pubmed/36061007 http://dx.doi.org/10.1016/j.heliyon.2022.e10372 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Research Article Boonrod, Arunnit Boonrod, Artit Meethawolgul, Atthaphon Twinprai, Prin Diagnostic accuracy of deep learning for evaluation of C-spine injury from lateral neck radiographs |
title | Diagnostic accuracy of deep learning for evaluation of C-spine injury from lateral neck radiographs |
title_full | Diagnostic accuracy of deep learning for evaluation of C-spine injury from lateral neck radiographs |
title_fullStr | Diagnostic accuracy of deep learning for evaluation of C-spine injury from lateral neck radiographs |
title_full_unstemmed | Diagnostic accuracy of deep learning for evaluation of C-spine injury from lateral neck radiographs |
title_short | Diagnostic accuracy of deep learning for evaluation of C-spine injury from lateral neck radiographs |
title_sort | diagnostic accuracy of deep learning for evaluation of c-spine injury from lateral neck radiographs |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9433686/ https://www.ncbi.nlm.nih.gov/pubmed/36061007 http://dx.doi.org/10.1016/j.heliyon.2022.e10372 |
work_keys_str_mv | AT boonrodarunnit diagnosticaccuracyofdeeplearningforevaluationofcspineinjuryfromlateralneckradiographs AT boonrodartit diagnosticaccuracyofdeeplearningforevaluationofcspineinjuryfromlateralneckradiographs AT meethawolgulatthaphon diagnosticaccuracyofdeeplearningforevaluationofcspineinjuryfromlateralneckradiographs AT twinpraiprin diagnosticaccuracyofdeeplearningforevaluationofcspineinjuryfromlateralneckradiographs |