Cargando…
The evolving role of morphology in endometrial cancer diagnostics: From histopathology and molecular testing towards integrative data analysis by deep learning
Endometrial cancer (EC) diagnostics is evolving into a system in which molecular aspects are increasingly important. The traditional histological subtype-driven classification has shifted to a molecular-based classification that stratifies EC into DNA polymerase epsilon mutated (POLEmut), mismatch r...
Autores principales: | Fremond, Sarah, Koelzer, Viktor Hendrik, Horeweg, Nanda, Bosse, Tjalling |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9433878/ https://www.ncbi.nlm.nih.gov/pubmed/36059702 http://dx.doi.org/10.3389/fonc.2022.928977 |
Ejemplares similares
-
Adjuvant therapy for endometrial cancer in the era of molecular classification: radiotherapy, chemoradiation and novel targets for therapy
por: van den Heerik, Anne Sophie V M, et al.
Publicado: (2021) -
Performance of a HER2 testing algorithm specific for p53‐abnormal endometrial cancer
por: Vermij, Lisa, et al.
Publicado: (2021) -
Tertiary lymphoid structures critical for prognosis in endometrial cancer patients
por: Horeweg, Nanda, et al.
Publicado: (2022) -
Deep learning-based morphological feature analysis and the prognostic association study in colon adenocarcinoma histopathological images
por: Xiao, Xiao, et al.
Publicado: (2023) -
The Tumor Border Configuration of Colorectal Cancer as a Histomorphological Prognostic Indicator
por: Koelzer, Viktor H., et al.
Publicado: (2014)