Cargando…
Experiments with LDA and Top2Vec for embedded topic discovery on social media data—A case study of cystic fibrosis
Social media has become an important resource for discussing, sharing, and seeking information pertinent to rare diseases by patients and their families, given the low prevalence in the extraordinarily sparse populations. In our previous study, we identified prevalent topics from Reddit via topic mo...
Autores principales: | Karas, Bradley, Qu, Sue, Xu, Yanji, Zhu, Qian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9433987/ https://www.ncbi.nlm.nih.gov/pubmed/36062265 http://dx.doi.org/10.3389/frai.2022.948313 |
Ejemplares similares
-
Topic2features: a novel framework to classify noisy and sparse textual data using LDA topic distributions
por: Wahid, Junaid Abdul, et al.
Publicado: (2021) -
Persona2vec: a flexible multi-role representations learning framework for graphs
por: Yoon, Jisung, et al.
Publicado: (2021) -
Confusion2Vec: towards enriching vector space word representations with representational ambiguities
por: Gurunath Shivakumar, Prashanth, et al.
Publicado: (2019) -
Stance detection with BERT embeddings for credibility analysis of information on social media
por: Karande, Hema, et al.
Publicado: (2021) -
DeepSpectrumLite: A Power-Efficient Transfer Learning Framework for Embedded Speech and Audio Processing From Decentralized Data
por: Amiriparian, Shahin, et al.
Publicado: (2022)