Cargando…
A high throughput generative vector autoregression model for stochastic synapses
By imitating the synaptic connectivity and plasticity of the brain, emerging electronic nanodevices offer new opportunities as the building blocks of neuromorphic systems. One challenge for large-scale simulations of computational architectures based on emerging devices is to accurately capture devi...
Autores principales: | Hennen, Tyler, Elias, Alexander, Nodin, Jean-François, Molas, Gabriel, Waser, Rainer, Wouters, Dirk J., Bedau, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9433991/ https://www.ncbi.nlm.nih.gov/pubmed/36061591 http://dx.doi.org/10.3389/fnins.2022.941753 |
Ejemplares similares
-
Utilizing the Switching Stochasticity of HfO(2)/TiO(x)-Based ReRAM Devices and the Concept of Multiple Device Synapses for the Classification of Overlapping and Noisy Patterns
por: Bengel, Christopher, et al.
Publicado: (2021) -
Stochastic Synapses Enable Efficient Brain-Inspired Learning Machines
por: Neftci, Emre O., et al.
Publicado: (2016) -
Measuring Statistical Asymmetries of Stochastic Processes: Study of the Autoregressive Process
por: Yamashita Rios de Sousa, Arthur Matsuo, et al.
Publicado: (2018) -
Model reduction methods for vector autoregressive processes
por: Brüggemann, Ralf
Publicado: (2004) -
Stability analysis of associative memory network composed of stochastic neurons and dynamic synapses
por: Katori, Yuichi, et al.
Publicado: (2013)