Cargando…
Two-echelon inventory location model with response time requirement and lateral transshipment
This study presents a new model for a two-echelon location-inventory system with response time constraints. This system controls inventory with a (S-1, S) policy and comprises of a finite collection of customers, a finite collection of service facilities and a single plant. This paper's main no...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9434047/ https://www.ncbi.nlm.nih.gov/pubmed/36061034 http://dx.doi.org/10.1016/j.heliyon.2022.e10353 |
Sumario: | This study presents a new model for a two-echelon location-inventory system with response time constraints. This system controls inventory with a (S-1, S) policy and comprises of a finite collection of customers, a finite collection of service facilities and a single plant. This paper's main novelty is the incorporation of lateral transshipment into a two-echelon location-inventory system with response time requirement. By using a continuous-time Markov process approach, we determine expected on-hand inventory level in steady state, expected lateral transshipment level in steady state and expected backorder level in steady state. We utilize these steady state levels to formulate a mixed integer nonlinear programming model which incorporates lateral transshipment into an integrated location-inventory system with response time constraint. The model minimizes the total system cost and simultaneously determines: optimal location and number of service facilities, the optimal assignment of customers and base-stock level. We exploit the model's properties using Lagrange decomposition and we show that the model is convex. The model is tested on a real-world scenario using GAMS and our model returned lower costs following comparisons with a model without lateral transshipment. We also establish that lateral transshipment results to consistency of expected cost with varying response time requirement. |
---|