Cargando…

ZAKβ is activated by cellular compression and mediates contraction‐induced MAP kinase signaling in skeletal muscle

Mechanical inputs give rise to p38 and JNK activation, which mediate adaptive physiological responses in various tissues. In skeletal muscle, contraction‐induced p38 and JNK signaling ensure adaptation to exercise, muscle repair, and hypertrophy. However, the mechanisms by which muscle fibers sense...

Descripción completa

Detalles Bibliográficos
Autores principales: Nordgaard, Cathrine, Vind, Anna Constance, Stonadge, Amy, Kjøbsted, Rasmus, Snieckute, Goda, Antas, Pedro, Blasius, Melanie, Reinert, Marie Sofie, Del Val, Ana Martinez, Bekker‐Jensen, Dorte Breinholdt, Haahr, Peter, Miroshnikova, Yekaterina A, Mazouzi, Abdelghani, Falk, Sarah, Perrier‐Groult, Emeline, Tiedje, Christopher, Li, Xiang, Jakobsen, Jens Rithamer, Jørgensen, Nicolas Oldenburg, Wojtaszewski, Jørgen FP, Mallein‐Gerin, Frederic, Andersen, Jesper Løvind, Pennisi, Cristian Pablo, Clemmensen, Christoffer, Kassem, Moustapha, Jafari, Abbas, Brummelkamp, Thijn, Li, Vivian SW, Wickström, Sara A, Olsen, Jesper Velgaard, Blanco, Gonzalo, Bekker‐Jensen, Simon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9434084/
https://www.ncbi.nlm.nih.gov/pubmed/35899396
http://dx.doi.org/10.15252/embj.2022111650
Descripción
Sumario:Mechanical inputs give rise to p38 and JNK activation, which mediate adaptive physiological responses in various tissues. In skeletal muscle, contraction‐induced p38 and JNK signaling ensure adaptation to exercise, muscle repair, and hypertrophy. However, the mechanisms by which muscle fibers sense mechanical load to activate this signaling have remained elusive. Here, we show that the upstream MAP3K ZAKβ is activated by cellular compression induced by osmotic shock and cyclic compression in vitro, and muscle contraction in vivo. This function relies on ZAKβ's ability to recognize stress fibers in cells and Z‐discs in muscle fibers when mechanically perturbed. Consequently, ZAK‐deficient mice present with skeletal muscle defects characterized by fibers with centralized nuclei and progressive adaptation towards a slower myosin profile. Our results highlight how cells in general respond to mechanical compressive load and how mechanical forces generated during muscle contraction are translated into MAP kinase signaling.