Cargando…

Imaging-associated stress causes divergent phase transitions of RNA-binding proteins in the Caenorhabditis elegans germ line

One emerging paradigm of cellular organization of RNA and RNA-binding proteins is the formation of membraneless organelles. Examples of membraneless organelles include several types of ribonucleoprotein granules that form via phase separation. A variety of intracellular pH changes and posttranslatio...

Descripción completa

Detalles Bibliográficos
Autores principales: Elaswad, Mohamed T, Munderloh, Chloe, Watkins, Brooklynne M, Sharp, Katherine G, Breton, Elizabeth, Schisa, Jennifer A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9434235/
https://www.ncbi.nlm.nih.gov/pubmed/35801939
http://dx.doi.org/10.1093/g3journal/jkac172
_version_ 1784780821920481280
author Elaswad, Mohamed T
Munderloh, Chloe
Watkins, Brooklynne M
Sharp, Katherine G
Breton, Elizabeth
Schisa, Jennifer A
author_facet Elaswad, Mohamed T
Munderloh, Chloe
Watkins, Brooklynne M
Sharp, Katherine G
Breton, Elizabeth
Schisa, Jennifer A
author_sort Elaswad, Mohamed T
collection PubMed
description One emerging paradigm of cellular organization of RNA and RNA-binding proteins is the formation of membraneless organelles. Examples of membraneless organelles include several types of ribonucleoprotein granules that form via phase separation. A variety of intracellular pH changes and posttranslational modifications, as well as extracellular stresses, can stimulate the condensation of proteins into granules. For example, the assembly of stress granules induced by oxidative stress, osmotic stress, and heat stress has been well characterized in a variety of somatic cell types. In the germ line, similar stress-induced condensation of proteins occurs; however, less is known about the role of phase separation during gamete production. Researchers who study phase transitions often make use of fluorescent reporters to study the dynamics of RNA-binding proteins during live cell imaging. In this report, we demonstrate that common conditions of live-imaging Caenorhabditis elegans can cause an inadvertent stress and trigger phase transitions of RNA-binding proteins. We show that this imaging-associated stress stimulates decondensation of multiple germ granule proteins and condensation of several P-body proteins. Proteins within larger ribonucleoprotein granules in meiotically arrested oocytes do not appear to be as sensitive to the stress as proteins in diakinesis oocytes of young hermaphrodites, with the exception of the germ granule protein PGL-1. Our results have important methodological implications for all researchers using live-cell imaging techniques. The data also suggest that the RNA-binding proteins within large ribonucleoprotein granules of arrested oocytes may have distinct phases, which we characterize in our companion article.
format Online
Article
Text
id pubmed-9434235
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-94342352022-09-01 Imaging-associated stress causes divergent phase transitions of RNA-binding proteins in the Caenorhabditis elegans germ line Elaswad, Mohamed T Munderloh, Chloe Watkins, Brooklynne M Sharp, Katherine G Breton, Elizabeth Schisa, Jennifer A G3 (Bethesda) Investigation One emerging paradigm of cellular organization of RNA and RNA-binding proteins is the formation of membraneless organelles. Examples of membraneless organelles include several types of ribonucleoprotein granules that form via phase separation. A variety of intracellular pH changes and posttranslational modifications, as well as extracellular stresses, can stimulate the condensation of proteins into granules. For example, the assembly of stress granules induced by oxidative stress, osmotic stress, and heat stress has been well characterized in a variety of somatic cell types. In the germ line, similar stress-induced condensation of proteins occurs; however, less is known about the role of phase separation during gamete production. Researchers who study phase transitions often make use of fluorescent reporters to study the dynamics of RNA-binding proteins during live cell imaging. In this report, we demonstrate that common conditions of live-imaging Caenorhabditis elegans can cause an inadvertent stress and trigger phase transitions of RNA-binding proteins. We show that this imaging-associated stress stimulates decondensation of multiple germ granule proteins and condensation of several P-body proteins. Proteins within larger ribonucleoprotein granules in meiotically arrested oocytes do not appear to be as sensitive to the stress as proteins in diakinesis oocytes of young hermaphrodites, with the exception of the germ granule protein PGL-1. Our results have important methodological implications for all researchers using live-cell imaging techniques. The data also suggest that the RNA-binding proteins within large ribonucleoprotein granules of arrested oocytes may have distinct phases, which we characterize in our companion article. Oxford University Press 2022-07-08 /pmc/articles/PMC9434235/ /pubmed/35801939 http://dx.doi.org/10.1093/g3journal/jkac172 Text en © The Author(s) 2022. Published by Oxford University Press on behalf of Genetics Society of America. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Investigation
Elaswad, Mohamed T
Munderloh, Chloe
Watkins, Brooklynne M
Sharp, Katherine G
Breton, Elizabeth
Schisa, Jennifer A
Imaging-associated stress causes divergent phase transitions of RNA-binding proteins in the Caenorhabditis elegans germ line
title Imaging-associated stress causes divergent phase transitions of RNA-binding proteins in the Caenorhabditis elegans germ line
title_full Imaging-associated stress causes divergent phase transitions of RNA-binding proteins in the Caenorhabditis elegans germ line
title_fullStr Imaging-associated stress causes divergent phase transitions of RNA-binding proteins in the Caenorhabditis elegans germ line
title_full_unstemmed Imaging-associated stress causes divergent phase transitions of RNA-binding proteins in the Caenorhabditis elegans germ line
title_short Imaging-associated stress causes divergent phase transitions of RNA-binding proteins in the Caenorhabditis elegans germ line
title_sort imaging-associated stress causes divergent phase transitions of rna-binding proteins in the caenorhabditis elegans germ line
topic Investigation
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9434235/
https://www.ncbi.nlm.nih.gov/pubmed/35801939
http://dx.doi.org/10.1093/g3journal/jkac172
work_keys_str_mv AT elaswadmohamedt imagingassociatedstresscausesdivergentphasetransitionsofrnabindingproteinsinthecaenorhabditiselegansgermline
AT munderlohchloe imagingassociatedstresscausesdivergentphasetransitionsofrnabindingproteinsinthecaenorhabditiselegansgermline
AT watkinsbrooklynnem imagingassociatedstresscausesdivergentphasetransitionsofrnabindingproteinsinthecaenorhabditiselegansgermline
AT sharpkatherineg imagingassociatedstresscausesdivergentphasetransitionsofrnabindingproteinsinthecaenorhabditiselegansgermline
AT bretonelizabeth imagingassociatedstresscausesdivergentphasetransitionsofrnabindingproteinsinthecaenorhabditiselegansgermline
AT schisajennifera imagingassociatedstresscausesdivergentphasetransitionsofrnabindingproteinsinthecaenorhabditiselegansgermline