Cargando…
Machine learning approach identified clusters for patients with low cardiac output syndrome and outcomes after cardiac surgery
BACKGROUND: Low cardiac output syndrome (LCOS) is the most serious physiological abnormality with high mortality for patients after cardiac surgery. This study aimed to explore the multidimensional data of clinical features and outcomes to provide individualized care for patients with LCOS. METHODS:...
Autores principales: | Zhao, Xu, Gu, Bowen, Li, Qiuying, Li, Jiaxin, Zeng, Weiwei, Li, Yagang, Guan, Yanping, Huang, Min, Lei, Liming, Zhong, Guoping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9434347/ https://www.ncbi.nlm.nih.gov/pubmed/36061544 http://dx.doi.org/10.3389/fcvm.2022.962992 |
Ejemplares similares
-
Impact of pacing mode and different echocardiographic parameters on cardiac output (PADIAC)
por: Blessberger, Hermann, et al.
Publicado: (2023) -
Prediction of low cardiac output syndrome in patients following cardiac surgery using machine learning
por: Hong, Liang, et al.
Publicado: (2022) -
Machine Learning to Predict Long-Term Cardiac-Relative Prognosis in Patients With Extra-Cardiac Vascular Disease
por: Lin, Guisen, et al.
Publicado: (2021) -
Definitions of low cardiac output syndrome after cardiac surgery and their effect on the incidence of intraoperative LCOS: A literature review and cohort study
por: Schoonen, Anna, et al.
Publicado: (2022) -
Management of high-output cardiac failure caused by head and neck AVMs: Percutaneous suture-assisted ethanol and coil embolotherapy
por: Wen, Ming-zhe, et al.
Publicado: (2022)