Cargando…
Automatic landmark detection and mapping for 2D/3D registration with BoneNet
The 3D musculoskeletal motion of animals is of interest for various biological studies and can be derived from X-ray fluoroscopy acquisitions by means of image matching or manual landmark annotation and mapping. While the image matching method requires a robust similarity measure (intensity-based) o...
Autores principales: | Nguyen, Van, Alves Pereira, Luis F., Liang, Zhihua, Mielke, Falk, Van Houtte, Jeroen, Sijbers, Jan, De Beenhouwer, Jan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9434378/ https://www.ncbi.nlm.nih.gov/pubmed/36061115 http://dx.doi.org/10.3389/fvets.2022.923449 |
Ejemplares similares
-
Deep learning-based 2D/3D registration of an atlas to biplanar X-ray images
por: Van Houtte, Jeroen, et al.
Publicado: (2022) -
EquiSim: An Open-Source Articulatable Statistical Model of the Equine Distal Limb
por: Van Houtte, Jeroen, et al.
Publicado: (2021) -
LandmarkNet: a 2D digital radiograph landmark estimator for registration
por: Wang, Zhen, et al.
Publicado: (2020) -
Deformable registration of 3D ultrasound volumes using automatic landmark generation
por: Figl, Michael, et al.
Publicado: (2019) -
Automatic landmark annotation and dense correspondence registration for 3D human facial images
por: Guo, Jianya, et al.
Publicado: (2013)