Cargando…
Detecting Potentially Harmful and Protective Suicide-Related Content on Twitter: Machine Learning Approach
BACKGROUND: Research has repeatedly shown that exposure to suicide-related news media content is associated with suicide rates, with some content characteristics likely having harmful and others potentially protective effects. Although good evidence exists for a few selected characteristics, systema...
Autores principales: | Metzler, Hannah, Baginski, Hubert, Niederkrotenthaler, Thomas, Garcia, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9434391/ https://www.ncbi.nlm.nih.gov/pubmed/35976193 http://dx.doi.org/10.2196/34705 |
Ejemplares similares
-
Editorial: The Role of Media in Suicide and Self-Harm: Cross-Disciplinary Perspectives
por: Cheng, Qijin, et al.
Publicado: (2022) -
Validating Machine Learning Algorithms for Twitter Data Against Established Measures of Suicidality
por: Braithwaite, Scott R, et al.
Publicado: (2016) -
Multi-class machine classification of suicide-related communication on Twitter
por: Burnap, Pete, et al.
Publicado: (2017) -
Detection of Suicidality Among Opioid Users on Reddit: Machine Learning–Based Approach
por: Yao, Hannah, et al.
Publicado: (2020) -
Detecting Suicide and Self-Harm Discussions Among Opioid Substance Users on Instagram Using Machine Learning
por: Purushothaman, Vidya, et al.
Publicado: (2021)