Cargando…
A finite difference scheme for integrating the Takagi–Taupin equations on an arbitrary orthogonal grid
Calculating dynamical diffraction patterns for X-ray diffraction imaging techniques requires numerical integration of the Takagi–Taupin equations. This is usually performed with a simple, second-order finite difference scheme on a sheared computational grid in which two of the axes are aligned with...
Autores principales: | Carlsen, Mads, Simons, Hugh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9434601/ https://www.ncbi.nlm.nih.gov/pubmed/36047396 http://dx.doi.org/10.1107/S2053273322004934 |
Ejemplares similares
-
A hybrid explicit implicit staggered grid finite-difference scheme for the first-order acoustic wave equation modeling
por: Liang, Wenquan, et al.
Publicado: (2022) -
A Comment to F. Takagi's Talk
por: Wróblewski, A
Publicado: (1978) -
Predictive Crime Mapping: Arbitrary Grids or Street Networks?
por: Rosser, Gabriel, et al.
Publicado: (2016) -
Advanced Takagi‒Sugeno fuzzy systems: delay and saturation
por: Benzaouia, Abdellah, et al.
Publicado: (2014) -
Proposal of Takagi–Sugeno Fuzzy-PI Controller Hardware
por: Silva, Sérgio N., et al.
Publicado: (2020)