Cargando…
A Comparison between the Perturbed-Chain Statistical Associating Fluid Theory Equation of State and Machine Learning Modeling Approaches in Asphaltene Onset Pressure and Bubble Point Pressure Prediction during Gas Injection
[Image: see text] Predicting asphaltene onset pressure (AOP) and bubble point pressure (Pb) is essential for optimization of gas injection for enhanced oil recovery. Pressure-Volume-Temperature or PVT studies along with equations of state (EoSs) are widely used to predict AOP and Pb. However, PVT ex...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9434618/ https://www.ncbi.nlm.nih.gov/pubmed/36061711 http://dx.doi.org/10.1021/acsomega.2c03192 |
_version_ | 1784780914762448896 |
---|---|
author | Tazikeh, Simin Davoudi, Abdollah Shafiei, Ali Parsaei, Hossein Atabaev, Timur Sh. Ivakhnenko, Oleksandr P. |
author_facet | Tazikeh, Simin Davoudi, Abdollah Shafiei, Ali Parsaei, Hossein Atabaev, Timur Sh. Ivakhnenko, Oleksandr P. |
author_sort | Tazikeh, Simin |
collection | PubMed |
description | [Image: see text] Predicting asphaltene onset pressure (AOP) and bubble point pressure (Pb) is essential for optimization of gas injection for enhanced oil recovery. Pressure-Volume-Temperature or PVT studies along with equations of state (EoSs) are widely used to predict AOP and Pb. However, PVT experiments are costly and time-consuming. The perturbed-chain statistical associating fluid theory or PC-SAFT is a sophisticated EoS used for prediction of the AOP and Pb. However, this method is computationally complex and has high data requirements. Hence, developing precise and reliable smart models for prediction of the AOP and Pb is inevitable. In this paper, we used machine learning (ML) methods to develop predictive tools for the estimation of the AOP and Pb using experimental data (AOP data set: 170 samples; Pb data set: 146 samples). Extra trees (ET), support vector machine (SVM), decision tree, and k-nearest neighbors ML methods were used. Reservoir temperature, reservoir pressure, SARA fraction, API gravity, gas–oil ratio, fluid molecular weight, monophasic composition, and composition of gas injection are considered as input data. The ET (R(2): 0.793, RMSE: 7.5) and the SVM models (R(2): 0.988, RMSE: 0.76) attained more reliable results for estimation of the AOP and Pb, respectively. Generally, the accuracy of the PC-SAFT model is higher than that of the AI/ML models. However, our results confirm that the AI/ML approach is an acceptable alternative for the PC-SAFT model when we face lack of data and/or complex mathematical equations. The developed smart models are accurate and fast and produce reliable results with lower data requirements. |
format | Online Article Text |
id | pubmed-9434618 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-94346182022-09-02 A Comparison between the Perturbed-Chain Statistical Associating Fluid Theory Equation of State and Machine Learning Modeling Approaches in Asphaltene Onset Pressure and Bubble Point Pressure Prediction during Gas Injection Tazikeh, Simin Davoudi, Abdollah Shafiei, Ali Parsaei, Hossein Atabaev, Timur Sh. Ivakhnenko, Oleksandr P. ACS Omega [Image: see text] Predicting asphaltene onset pressure (AOP) and bubble point pressure (Pb) is essential for optimization of gas injection for enhanced oil recovery. Pressure-Volume-Temperature or PVT studies along with equations of state (EoSs) are widely used to predict AOP and Pb. However, PVT experiments are costly and time-consuming. The perturbed-chain statistical associating fluid theory or PC-SAFT is a sophisticated EoS used for prediction of the AOP and Pb. However, this method is computationally complex and has high data requirements. Hence, developing precise and reliable smart models for prediction of the AOP and Pb is inevitable. In this paper, we used machine learning (ML) methods to develop predictive tools for the estimation of the AOP and Pb using experimental data (AOP data set: 170 samples; Pb data set: 146 samples). Extra trees (ET), support vector machine (SVM), decision tree, and k-nearest neighbors ML methods were used. Reservoir temperature, reservoir pressure, SARA fraction, API gravity, gas–oil ratio, fluid molecular weight, monophasic composition, and composition of gas injection are considered as input data. The ET (R(2): 0.793, RMSE: 7.5) and the SVM models (R(2): 0.988, RMSE: 0.76) attained more reliable results for estimation of the AOP and Pb, respectively. Generally, the accuracy of the PC-SAFT model is higher than that of the AI/ML models. However, our results confirm that the AI/ML approach is an acceptable alternative for the PC-SAFT model when we face lack of data and/or complex mathematical equations. The developed smart models are accurate and fast and produce reliable results with lower data requirements. American Chemical Society 2022-08-16 /pmc/articles/PMC9434618/ /pubmed/36061711 http://dx.doi.org/10.1021/acsomega.2c03192 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Tazikeh, Simin Davoudi, Abdollah Shafiei, Ali Parsaei, Hossein Atabaev, Timur Sh. Ivakhnenko, Oleksandr P. A Comparison between the Perturbed-Chain Statistical Associating Fluid Theory Equation of State and Machine Learning Modeling Approaches in Asphaltene Onset Pressure and Bubble Point Pressure Prediction during Gas Injection |
title | A Comparison between
the Perturbed-Chain Statistical
Associating Fluid Theory Equation of State and Machine Learning Modeling
Approaches in Asphaltene Onset Pressure and Bubble Point Pressure
Prediction during Gas Injection |
title_full | A Comparison between
the Perturbed-Chain Statistical
Associating Fluid Theory Equation of State and Machine Learning Modeling
Approaches in Asphaltene Onset Pressure and Bubble Point Pressure
Prediction during Gas Injection |
title_fullStr | A Comparison between
the Perturbed-Chain Statistical
Associating Fluid Theory Equation of State and Machine Learning Modeling
Approaches in Asphaltene Onset Pressure and Bubble Point Pressure
Prediction during Gas Injection |
title_full_unstemmed | A Comparison between
the Perturbed-Chain Statistical
Associating Fluid Theory Equation of State and Machine Learning Modeling
Approaches in Asphaltene Onset Pressure and Bubble Point Pressure
Prediction during Gas Injection |
title_short | A Comparison between
the Perturbed-Chain Statistical
Associating Fluid Theory Equation of State and Machine Learning Modeling
Approaches in Asphaltene Onset Pressure and Bubble Point Pressure
Prediction during Gas Injection |
title_sort | comparison between
the perturbed-chain statistical
associating fluid theory equation of state and machine learning modeling
approaches in asphaltene onset pressure and bubble point pressure
prediction during gas injection |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9434618/ https://www.ncbi.nlm.nih.gov/pubmed/36061711 http://dx.doi.org/10.1021/acsomega.2c03192 |
work_keys_str_mv | AT tazikehsimin acomparisonbetweentheperturbedchainstatisticalassociatingfluidtheoryequationofstateandmachinelearningmodelingapproachesinasphalteneonsetpressureandbubblepointpressurepredictionduringgasinjection AT davoudiabdollah acomparisonbetweentheperturbedchainstatisticalassociatingfluidtheoryequationofstateandmachinelearningmodelingapproachesinasphalteneonsetpressureandbubblepointpressurepredictionduringgasinjection AT shafieiali acomparisonbetweentheperturbedchainstatisticalassociatingfluidtheoryequationofstateandmachinelearningmodelingapproachesinasphalteneonsetpressureandbubblepointpressurepredictionduringgasinjection AT parsaeihossein acomparisonbetweentheperturbedchainstatisticalassociatingfluidtheoryequationofstateandmachinelearningmodelingapproachesinasphalteneonsetpressureandbubblepointpressurepredictionduringgasinjection AT atabaevtimursh acomparisonbetweentheperturbedchainstatisticalassociatingfluidtheoryequationofstateandmachinelearningmodelingapproachesinasphalteneonsetpressureandbubblepointpressurepredictionduringgasinjection AT ivakhnenkooleksandrp acomparisonbetweentheperturbedchainstatisticalassociatingfluidtheoryequationofstateandmachinelearningmodelingapproachesinasphalteneonsetpressureandbubblepointpressurepredictionduringgasinjection AT tazikehsimin comparisonbetweentheperturbedchainstatisticalassociatingfluidtheoryequationofstateandmachinelearningmodelingapproachesinasphalteneonsetpressureandbubblepointpressurepredictionduringgasinjection AT davoudiabdollah comparisonbetweentheperturbedchainstatisticalassociatingfluidtheoryequationofstateandmachinelearningmodelingapproachesinasphalteneonsetpressureandbubblepointpressurepredictionduringgasinjection AT shafieiali comparisonbetweentheperturbedchainstatisticalassociatingfluidtheoryequationofstateandmachinelearningmodelingapproachesinasphalteneonsetpressureandbubblepointpressurepredictionduringgasinjection AT parsaeihossein comparisonbetweentheperturbedchainstatisticalassociatingfluidtheoryequationofstateandmachinelearningmodelingapproachesinasphalteneonsetpressureandbubblepointpressurepredictionduringgasinjection AT atabaevtimursh comparisonbetweentheperturbedchainstatisticalassociatingfluidtheoryequationofstateandmachinelearningmodelingapproachesinasphalteneonsetpressureandbubblepointpressurepredictionduringgasinjection AT ivakhnenkooleksandrp comparisonbetweentheperturbedchainstatisticalassociatingfluidtheoryequationofstateandmachinelearningmodelingapproachesinasphalteneonsetpressureandbubblepointpressurepredictionduringgasinjection |