Cargando…
Continuum Modeling with Functional Lennard-Jones Parameters for Methane Storage inside Various Carbon Nanostructures
[Image: see text] Methane capture and storage are of particular importance for the development of new technology to reduce the effects of climate change and global warming. Carbon-based nanomaterials are among several porous nanomaterials proposed as potential candidates for methane storage. In this...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9434623/ https://www.ncbi.nlm.nih.gov/pubmed/36061669 http://dx.doi.org/10.1021/acsomega.2c02485 |
Sumario: | [Image: see text] Methane capture and storage are of particular importance for the development of new technology to reduce the effects of climate change and global warming. Carbon-based nanomaterials are among several porous nanomaterials proposed as potential candidates for methane storage. In this paper, we adopt a new continuum approach with functional Lennard-Jones parameters to provide interaction energies for methane inside carbon nanostructures, namely fullerenes, nanotube bundles, and nanocones. This study provides a significant improvement to previous continuum modeling approaches using the Lennard-Jones potential. |
---|