Cargando…
Machine learning approaches for the mortality risk assessment of patients undergoing hemodialysis
INTRODUCTION: Mortality is a major primary endpoint for long-term hemodialysis (HD) patients. The clinical status of HD patients generally relies on longitudinal clinical observations such as monthly laboratory examinations and physical examinations. METHODS: A total of 829 HD patients who met the i...
Autores principales: | Yang, Cheng-Hong, Chen, Yin-Syuan, Moi, Sin-Hua, Chen, Jin-Bor, Wang, Lin, Chuang, Li-Yeh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9434675/ https://www.ncbi.nlm.nih.gov/pubmed/36062293 http://dx.doi.org/10.1177/20406223221119617 |
Ejemplares similares
-
Higher-order clinical risk factor interaction analysis for overall mortality in maintenance hemodialysis patients
por: Yang, Cheng-Hong, et al.
Publicado: (2020) -
Application of deep learning to predict the low serum albumin in new hemodialysis patients
por: Yang, Cheng-Hong, et al.
Publicado: (2023) -
Effect of clinical factors on trajectory of functional performance in patients undergoing hemodialysis
por: Chen, Jin-Bor, et al.
Publicado: (2020) -
Identification of mortality-risk-related missense variant for renal clear cell carcinoma using deep learning
por: Chen, Jin-Bor, et al.
Publicado: (2021) -
Association of proportion of the HDL-cholesterol subclasses HDL-2b and HDL-3 and macrovascular events among patients undergoing hemodialysis
por: Lee, Wen-Chin, et al.
Publicado: (2021)