Cargando…
Nanomaterials and Technology Applications for Hydraulic Fracturing of Unconventional Oil and Gas Reservoirs: A State-of-the-Art Review of Recent Advances and Perspectives
[Image: see text] The application of hydraulic fracturing stimulation technology to improve the productivity of unconventional oil and gas reservoirs is a well-established practice. With the increasing exploration and development of unconventional oil and gas resources, the associated geological con...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9434759/ https://www.ncbi.nlm.nih.gov/pubmed/36061652 http://dx.doi.org/10.1021/acsomega.2c02897 |
Sumario: | [Image: see text] The application of hydraulic fracturing stimulation technology to improve the productivity of unconventional oil and gas reservoirs is a well-established practice. With the increasing exploration and development of unconventional oil and gas resources, the associated geological conditions and physical properties are gradually becoming more and more complex. Therefore, it is necessary to develop technologies that can improve the development benefits to meet these challenges. In recent years, improving the effect of hydraulic fracturing stimulation in unconventional oil and gas reservoirs through the use of nanomaterials and technologies has attracted increasing attention. In this paper, we review the current status and research progress of the application of nanomaterials and technologies in various aspects of hydraulic fracturing in unconventional oil and gas reservoirs, expound the mechanism and advantages of these nanomaterials and technologies in detail, and provide future research directions. The reviewed literature indicates that nanomaterials and technologies show exciting potential applications in the hydraulic fracturing of unconventional reservoirs; for example, the sand-carrying and rheological properties of fracturing fluids can be significantly enhanced through the addition of nanomaterials. The use of nanomaterials to modify proppants can improve their compressive strength, thus meeting the needs of different reservoir conditions. The fracturing flowback fluid treatment efficiency and purification effect can be improved through the use of nanophotocatalysis and nanomembrane technologies, while degradable fracturing completion tools developed based on nanomaterials can effectively improve the efficiency of fracturing operations. Nanorobots and magnetic nanoparticles can be used to more efficiently monitor hydraulic fracturing and to accurately map the hydraulic fracture morphology. However, due to the complex preparation process and high cost of nanomaterials, more work is needed to fully investigate the application mechanisms of nanomaterials and technologies, as well as to evaluate the economic feasibility of these exciting technologies. The main research objective of this review is to comprehensively summarize the application and research progress of nanomaterials and technologies in various aspects of hydraulic fracturing in unconventional oil and gas reservoirs, analyze the existing problems and challenges, and propose some targeted forward-looking recommendations, which may be helpful for future research and applications. |
---|