Cargando…
Learning a confidence score and the latent space of a new supervised autoencoder for diagnosis and prognosis in clinical metabolomic studies
BACKGROUND: Presently, there is a wide variety of classification methods and deep neural network approaches in bioinformatics. Deep neural networks have proven their effectiveness for classification tasks, and have outperformed classical methods, but they suffer from a lack of interpretability. Ther...
Autores principales: | Chardin, David, Gille, Cyprien, Pourcher, Thierry, Humbert, Olivier, Barlaud, Michel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9434875/ https://www.ncbi.nlm.nih.gov/pubmed/36050631 http://dx.doi.org/10.1186/s12859-022-04900-x |
Ejemplares similares
-
Primal-dual for classification with rejection (PD-CR): a novel method for classification and feature selection—an application in metabolomics studies
por: Chardin, David, et al.
Publicado: (2021) -
Optimization of physical quantities in the autoencoder latent space
por: Park, S. M., et al.
Publicado: (2022) -
Survival analysis of patient groups defined by unsupervised machine learning clustering methods based on patient metabolomic data.
por: Bailleux, Caroline, et al.
Publicado: (2023) -
Semi-Supervised Framework with Autoencoder-Based Neural Networks for Fault Prognosis
por: da Rosa, Tiago Gaspar, et al.
Publicado: (2022) -
Hybrid autoencoder with orthogonal latent space for robust population structure inference
por: Yuan, Meng, et al.
Publicado: (2023)