Cargando…
Developing machine learning-based models to predict intrauterine insemination (IUI) success by address modeling challenges in imbalanced data and providing modification solutions for them
BACKGROUND: This study sought to provide machine learning-based classification models to predict the success of intrauterine insemination (IUI) therapy. Additionally, we sought to illustrate the effect of models fitting with balanced data vs original data with imbalanced data labels using two differ...
Autores principales: | Khodabandelu, Sajad, Basirat, Zahra, Khaleghi, Sara, Khafri, Soraya, Montazery Kordy, Hussain, Golsorkhtabaramiri, Masoumeh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9434923/ https://www.ncbi.nlm.nih.gov/pubmed/36050710 http://dx.doi.org/10.1186/s12911-022-01974-8 |
Ejemplares similares
-
Fertility Predictors in Intrauterine Insemination (IUI)
por: Huniadi, Anca, et al.
Publicado: (2023) -
Incidence and investigation of Covid-19 trend in Babol, northern Iran: A Joinpoint regression analysis
por: Khaleghi, Sara, et al.
Publicado: (2022) -
Development of a Machine Learning-Based Screening Method for Thyroid Nodules Classification by Solving the Imbalance Challenge in Thyroid Nodules Data
por: Khodabandelu, Sajad, et al.
Publicado: (2022) -
Pregnancy rates after slow-release insemination (SRI) and standard bolus intrauterine insemination (IUI) – A multicentre randomised, controlled trial
por: Marschalek, Julian, et al.
Publicado: (2020) -
The effect of a natural vaginal product based on honey on the success of intrauterine insemination (IUI) in infertility treatment
por: Kavousi, Maryam, et al.
Publicado: (2019)