Cargando…
Meglumine-Promoted Eco-Compatible Pseudo-Three-Component Reaction for the Synthesis of 1,1-Dihomoarylmethane Scaffolds and Their Green Credentials
[Image: see text] A simple, straightforward, and energy-efficient greener route for the synthesis of a series of biologically interesting functionalized 1,1-dihomoarylmethane scaffolds has been developed in the presence of meglumine as an efficient and eco-friendly organo-catalyst via one-pot pseudo...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9435056/ https://www.ncbi.nlm.nih.gov/pubmed/36061687 http://dx.doi.org/10.1021/acsomega.2c03787 |
_version_ | 1784781033599664128 |
---|---|
author | Patel, Manan S. Parekh, Jaydeepkumar N. Chudasama, Dipakkumar D. Patel, Harsh C. Dalwadi, Priyanka Kunjadiya, Anju Bhatt, Vaibhav Ram, Kesur R. |
author_facet | Patel, Manan S. Parekh, Jaydeepkumar N. Chudasama, Dipakkumar D. Patel, Harsh C. Dalwadi, Priyanka Kunjadiya, Anju Bhatt, Vaibhav Ram, Kesur R. |
author_sort | Patel, Manan S. |
collection | PubMed |
description | [Image: see text] A simple, straightforward, and energy-efficient greener route for the synthesis of a series of biologically interesting functionalized 1,1-dihomoarylmethane scaffolds has been developed in the presence of meglumine as an efficient and eco-friendly organo-catalyst via one-pot pseudo-three-component reaction at room temperature. Following this protocol, it is possible to synthesize 1,1-dihomoarylmethane scaffolds of an assortment of C–H activated acids such as dimedone, 1,3-cyclohexadione, 4-hydroxy-6-methyl-2-pyrone, 4-hydroxycoumarin, and 1-phenyl-3-methyl-pyrazolone. The salient features of the present green protocol are mild reaction conditions, good to excellent yields, operational simplicity, easy isolation of products, no cumbersome post treatment, high atom economy, and low E-factor. In addition, this chemistry portrays several green advantages including the reusability of reaction media and product scalability, which makes protocol sustainably efficient. Additionally, several control experiments such as protection of catalyst reactive site, D(2)O exchange, and (1)H NMR studies revealed possible pathways for meglumine-promoted reactions. Inspired by the natural physiological environment of 1,1-dihomoarylmethane scaffolds, we reconnoitered the biological profile of our compounds and synthesized compounds that were promising for their antiproliferative and antibacterial activities. |
format | Online Article Text |
id | pubmed-9435056 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-94350562022-09-02 Meglumine-Promoted Eco-Compatible Pseudo-Three-Component Reaction for the Synthesis of 1,1-Dihomoarylmethane Scaffolds and Their Green Credentials Patel, Manan S. Parekh, Jaydeepkumar N. Chudasama, Dipakkumar D. Patel, Harsh C. Dalwadi, Priyanka Kunjadiya, Anju Bhatt, Vaibhav Ram, Kesur R. ACS Omega [Image: see text] A simple, straightforward, and energy-efficient greener route for the synthesis of a series of biologically interesting functionalized 1,1-dihomoarylmethane scaffolds has been developed in the presence of meglumine as an efficient and eco-friendly organo-catalyst via one-pot pseudo-three-component reaction at room temperature. Following this protocol, it is possible to synthesize 1,1-dihomoarylmethane scaffolds of an assortment of C–H activated acids such as dimedone, 1,3-cyclohexadione, 4-hydroxy-6-methyl-2-pyrone, 4-hydroxycoumarin, and 1-phenyl-3-methyl-pyrazolone. The salient features of the present green protocol are mild reaction conditions, good to excellent yields, operational simplicity, easy isolation of products, no cumbersome post treatment, high atom economy, and low E-factor. In addition, this chemistry portrays several green advantages including the reusability of reaction media and product scalability, which makes protocol sustainably efficient. Additionally, several control experiments such as protection of catalyst reactive site, D(2)O exchange, and (1)H NMR studies revealed possible pathways for meglumine-promoted reactions. Inspired by the natural physiological environment of 1,1-dihomoarylmethane scaffolds, we reconnoitered the biological profile of our compounds and synthesized compounds that were promising for their antiproliferative and antibacterial activities. American Chemical Society 2022-08-18 /pmc/articles/PMC9435056/ /pubmed/36061687 http://dx.doi.org/10.1021/acsomega.2c03787 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Patel, Manan S. Parekh, Jaydeepkumar N. Chudasama, Dipakkumar D. Patel, Harsh C. Dalwadi, Priyanka Kunjadiya, Anju Bhatt, Vaibhav Ram, Kesur R. Meglumine-Promoted Eco-Compatible Pseudo-Three-Component Reaction for the Synthesis of 1,1-Dihomoarylmethane Scaffolds and Their Green Credentials |
title | Meglumine-Promoted
Eco-Compatible Pseudo-Three-Component
Reaction for the Synthesis of 1,1-Dihomoarylmethane Scaffolds and
Their Green Credentials |
title_full | Meglumine-Promoted
Eco-Compatible Pseudo-Three-Component
Reaction for the Synthesis of 1,1-Dihomoarylmethane Scaffolds and
Their Green Credentials |
title_fullStr | Meglumine-Promoted
Eco-Compatible Pseudo-Three-Component
Reaction for the Synthesis of 1,1-Dihomoarylmethane Scaffolds and
Their Green Credentials |
title_full_unstemmed | Meglumine-Promoted
Eco-Compatible Pseudo-Three-Component
Reaction for the Synthesis of 1,1-Dihomoarylmethane Scaffolds and
Their Green Credentials |
title_short | Meglumine-Promoted
Eco-Compatible Pseudo-Three-Component
Reaction for the Synthesis of 1,1-Dihomoarylmethane Scaffolds and
Their Green Credentials |
title_sort | meglumine-promoted
eco-compatible pseudo-three-component
reaction for the synthesis of 1,1-dihomoarylmethane scaffolds and
their green credentials |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9435056/ https://www.ncbi.nlm.nih.gov/pubmed/36061687 http://dx.doi.org/10.1021/acsomega.2c03787 |
work_keys_str_mv | AT patelmanans megluminepromotedecocompatiblepseudothreecomponentreactionforthesynthesisof11dihomoarylmethanescaffoldsandtheirgreencredentials AT parekhjaydeepkumarn megluminepromotedecocompatiblepseudothreecomponentreactionforthesynthesisof11dihomoarylmethanescaffoldsandtheirgreencredentials AT chudasamadipakkumard megluminepromotedecocompatiblepseudothreecomponentreactionforthesynthesisof11dihomoarylmethanescaffoldsandtheirgreencredentials AT patelharshc megluminepromotedecocompatiblepseudothreecomponentreactionforthesynthesisof11dihomoarylmethanescaffoldsandtheirgreencredentials AT dalwadipriyanka megluminepromotedecocompatiblepseudothreecomponentreactionforthesynthesisof11dihomoarylmethanescaffoldsandtheirgreencredentials AT kunjadiyaanju megluminepromotedecocompatiblepseudothreecomponentreactionforthesynthesisof11dihomoarylmethanescaffoldsandtheirgreencredentials AT bhattvaibhav megluminepromotedecocompatiblepseudothreecomponentreactionforthesynthesisof11dihomoarylmethanescaffoldsandtheirgreencredentials AT ramkesurr megluminepromotedecocompatiblepseudothreecomponentreactionforthesynthesisof11dihomoarylmethanescaffoldsandtheirgreencredentials |