Cargando…
Clinical validation of deep learning algorithms for radiotherapy targeting of non-small-cell lung cancer: an observational study
BACKGROUND: Artificial intelligence (AI) and deep learning have shown great potential in streamlining clinical tasks. However, most studies remain confined to in silico validation in small internal cohorts, without external validation or data on real-world clinical utility. We developed a strategy f...
Autores principales: | Hosny, Ahmed, Bitterman, Danielle S, Guthier, Christian V, Qian, Jack M, Roberts, Hannah, Perni, Subha, Saraf, Anurag, Peng, Luke C, Pashtan, Itai, Ye, Zezhong, Kann, Benjamin H, Kozono, David E, Christiani, David, Catalano, Paul J, Aerts, Hugo J W L, Mak, Raymond H |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9435511/ https://www.ncbi.nlm.nih.gov/pubmed/36028289 http://dx.doi.org/10.1016/S2589-7500(22)00129-7 |
Ejemplares similares
-
Decoding biological age from face photographs using deep learning
por: Zalay, Osbert, et al.
Publicado: (2023) -
Development and Validation of an Automated Image-Based Deep Learning Platform for Sarcopenia Assessment in Head and Neck Cancer
por: Ye, Zezhong, et al.
Publicado: (2023) -
Use of Artificial Intelligence Chatbots for Cancer Treatment Information
por: Chen, Shan, et al.
Publicado: (2023) -
Deep-learning system to improve the quality and efficiency of volumetric heart segmentation for breast cancer
por: Zeleznik, Roman, et al.
Publicado: (2021) -
A Paradigm Shift in Radiation Oncology Training
por: Perni, Subha, et al.
Publicado: (2020)