Cargando…
Haplotype and population structure inference using neural networks in whole-genome sequencing data
Accurate inference of population structure is important in many studies of population genetics. Here we present HaploNet, a method for performing dimensionality reduction and clustering of genetic data. The method is based on local clustering of phased haplotypes using neural networks from whole-gen...
Autores principales: | Meisner, Jonas, Albrechtsen, Anders |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9435741/ https://www.ncbi.nlm.nih.gov/pubmed/35794006 http://dx.doi.org/10.1101/gr.276813.122 |
Ejemplares similares
-
Bayesian Inference of Infectious Disease Transmission from Whole-Genome Sequence Data
por: Didelot, Xavier, et al.
Publicado: (2014) -
TITAN: inference of copy number architectures in clonal cell populations from tumor whole-genome sequence data
por: Ha, Gavin, et al.
Publicado: (2014) -
An integrative variant analysis pipeline for accurate genotype/haplotype inference in population NGS data
por: Wang, Yi, et al.
Publicado: (2013) -
Full-length haplotype reconstruction to infer the structure of heterogeneous virus populations
por: Giallonardo, Francesca Di, et al.
Publicado: (2014) -
Rapid haplotype inference for nuclear families
por: Williams, Amy L, et al.
Publicado: (2010)