Cargando…

Genomic analysis of Rad26 and Rad1–Rad10 reveals differences in their dependence on Mediator and RNA polymerase II

Mediator is a conserved coregulator playing a key role in RNA polymerase (Pol) II transcription. Mediator also links transcription and nucleotide excision repair (NER) via a direct contact with Rad2/ERCC5(XPG) endonuclease. In this work, we analyzed the genome-wide distribution of Rad26/ERCC6(CSB) a...

Descripción completa

Detalles Bibliográficos
Autores principales: Gopaul, Diyavarshini, Denby Wilkes, Cyril, Goldar, Arach, Giordanengo Aiach, Nathalie, Barrault, Marie-Bénédicte, Novikova, Elizaveta, Soutourina, Julie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9435749/
https://www.ncbi.nlm.nih.gov/pubmed/35738899
http://dx.doi.org/10.1101/gr.276371.121
_version_ 1784781218227683328
author Gopaul, Diyavarshini
Denby Wilkes, Cyril
Goldar, Arach
Giordanengo Aiach, Nathalie
Barrault, Marie-Bénédicte
Novikova, Elizaveta
Soutourina, Julie
author_facet Gopaul, Diyavarshini
Denby Wilkes, Cyril
Goldar, Arach
Giordanengo Aiach, Nathalie
Barrault, Marie-Bénédicte
Novikova, Elizaveta
Soutourina, Julie
author_sort Gopaul, Diyavarshini
collection PubMed
description Mediator is a conserved coregulator playing a key role in RNA polymerase (Pol) II transcription. Mediator also links transcription and nucleotide excision repair (NER) via a direct contact with Rad2/ERCC5(XPG) endonuclease. In this work, we analyzed the genome-wide distribution of Rad26/ERCC6(CSB) and Rad1–Rad10/ERCC4(XPF)-ERCC1, addressing the question of a potential link of these proteins with Mediator and Pol II in yeast Saccharomyces cerevisiae. Our genomic analyses reveal that Rad1–Rad10 and Rad26 are present on the yeast genome in the absence of genotoxic stress, especially at highly transcribed regions, with Rad26 binding strongly correlating with that of Pol II. Moreover, we show that Rad1–Rad10 and Rad26 colocalize with Mediator at intergenic regions and physically interact with this complex. Using kin28 TFIIH mutant, we found that Mediator stabilization on core promoters leads to an increase in Rad1–Rad10 chromatin binding, whereas Rad26 occupancy follows mainly a decrease in Pol II transcription. Combined with multivariate analyses, our results show the relationships between Rad1–Rad10, Rad26, Mediator, and Pol II, modulated by the changes in binding dynamics of Mediator and Pol II transcription. In conclusion, we extend the Mediator link to Rad1–Rad10 and Rad26 NER proteins and reveal important differences in their dependence on Mediator and Pol II. Rad2 is the most dependent on Mediator, followed by Rad1–Rad10, whereas Rad26 is the most closely related to Pol II. Our work thus contributes to new concepts of the functional interplay between transcription and DNA repair machineries, which are relevant for human diseases including cancer and XP/CS syndromes.
format Online
Article
Text
id pubmed-9435749
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Cold Spring Harbor Laboratory Press
record_format MEDLINE/PubMed
spelling pubmed-94357492023-02-01 Genomic analysis of Rad26 and Rad1–Rad10 reveals differences in their dependence on Mediator and RNA polymerase II Gopaul, Diyavarshini Denby Wilkes, Cyril Goldar, Arach Giordanengo Aiach, Nathalie Barrault, Marie-Bénédicte Novikova, Elizaveta Soutourina, Julie Genome Res Research Mediator is a conserved coregulator playing a key role in RNA polymerase (Pol) II transcription. Mediator also links transcription and nucleotide excision repair (NER) via a direct contact with Rad2/ERCC5(XPG) endonuclease. In this work, we analyzed the genome-wide distribution of Rad26/ERCC6(CSB) and Rad1–Rad10/ERCC4(XPF)-ERCC1, addressing the question of a potential link of these proteins with Mediator and Pol II in yeast Saccharomyces cerevisiae. Our genomic analyses reveal that Rad1–Rad10 and Rad26 are present on the yeast genome in the absence of genotoxic stress, especially at highly transcribed regions, with Rad26 binding strongly correlating with that of Pol II. Moreover, we show that Rad1–Rad10 and Rad26 colocalize with Mediator at intergenic regions and physically interact with this complex. Using kin28 TFIIH mutant, we found that Mediator stabilization on core promoters leads to an increase in Rad1–Rad10 chromatin binding, whereas Rad26 occupancy follows mainly a decrease in Pol II transcription. Combined with multivariate analyses, our results show the relationships between Rad1–Rad10, Rad26, Mediator, and Pol II, modulated by the changes in binding dynamics of Mediator and Pol II transcription. In conclusion, we extend the Mediator link to Rad1–Rad10 and Rad26 NER proteins and reveal important differences in their dependence on Mediator and Pol II. Rad2 is the most dependent on Mediator, followed by Rad1–Rad10, whereas Rad26 is the most closely related to Pol II. Our work thus contributes to new concepts of the functional interplay between transcription and DNA repair machineries, which are relevant for human diseases including cancer and XP/CS syndromes. Cold Spring Harbor Laboratory Press 2022-08 /pmc/articles/PMC9435749/ /pubmed/35738899 http://dx.doi.org/10.1101/gr.276371.121 Text en © 2022 Gopaul et al.; Published by Cold Spring Harbor Laboratory Press https://creativecommons.org/licenses/by-nc/4.0/This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see https://genome.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) .
spellingShingle Research
Gopaul, Diyavarshini
Denby Wilkes, Cyril
Goldar, Arach
Giordanengo Aiach, Nathalie
Barrault, Marie-Bénédicte
Novikova, Elizaveta
Soutourina, Julie
Genomic analysis of Rad26 and Rad1–Rad10 reveals differences in their dependence on Mediator and RNA polymerase II
title Genomic analysis of Rad26 and Rad1–Rad10 reveals differences in their dependence on Mediator and RNA polymerase II
title_full Genomic analysis of Rad26 and Rad1–Rad10 reveals differences in their dependence on Mediator and RNA polymerase II
title_fullStr Genomic analysis of Rad26 and Rad1–Rad10 reveals differences in their dependence on Mediator and RNA polymerase II
title_full_unstemmed Genomic analysis of Rad26 and Rad1–Rad10 reveals differences in their dependence on Mediator and RNA polymerase II
title_short Genomic analysis of Rad26 and Rad1–Rad10 reveals differences in their dependence on Mediator and RNA polymerase II
title_sort genomic analysis of rad26 and rad1–rad10 reveals differences in their dependence on mediator and rna polymerase ii
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9435749/
https://www.ncbi.nlm.nih.gov/pubmed/35738899
http://dx.doi.org/10.1101/gr.276371.121
work_keys_str_mv AT gopauldiyavarshini genomicanalysisofrad26andrad1rad10revealsdifferencesintheirdependenceonmediatorandrnapolymeraseii
AT denbywilkescyril genomicanalysisofrad26andrad1rad10revealsdifferencesintheirdependenceonmediatorandrnapolymeraseii
AT goldararach genomicanalysisofrad26andrad1rad10revealsdifferencesintheirdependenceonmediatorandrnapolymeraseii
AT giordanengoaiachnathalie genomicanalysisofrad26andrad1rad10revealsdifferencesintheirdependenceonmediatorandrnapolymeraseii
AT barraultmariebenedicte genomicanalysisofrad26andrad1rad10revealsdifferencesintheirdependenceonmediatorandrnapolymeraseii
AT novikovaelizaveta genomicanalysisofrad26andrad1rad10revealsdifferencesintheirdependenceonmediatorandrnapolymeraseii
AT soutourinajulie genomicanalysisofrad26andrad1rad10revealsdifferencesintheirdependenceonmediatorandrnapolymeraseii