Cargando…
MFA-net: Object detection for complex X-ray cargo and baggage security imagery
Deep convolutional networks have been developed to detect prohibited items for automated inspection of X-ray screening systems in the transport security system. To our knowledge, the existing frameworks were developed to recognize threats using only baggage security X-ray scans. Therefore, the detec...
Autores principales: | Viriyasaranon, Thanaporn, Chae, Seung-Hoon, Choi, Jang-Hwan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9436121/ https://www.ncbi.nlm.nih.gov/pubmed/36048779 http://dx.doi.org/10.1371/journal.pone.0272961 |
Ejemplares similares
-
Object detectors involving a NAS-gate convolutional module and capsule attention module
por: Viriyasaranon, Thanaporn, et al.
Publicado: (2022) -
Using Eye Movements to Understand how Security Screeners Search for Threats in X-Ray Baggage
por: Donnelly, Nick, et al.
Publicado: (2019) -
Expertise, Automation and Trust in X-Ray Screening of Cabin Baggage
por: Chavaillaz, Alain, et al.
Publicado: (2019) -
Detection measures for visual inspection of X-ray images of passenger baggage
por: Sterchi, Yanik, et al.
Publicado: (2019) -
Improved X-ray baggage screening sensitivity with ‘targetless’ search training
por: Muhl-Richardson, Alex, et al.
Publicado: (2021)