Cargando…
Optimizing the human learnability of abstract network representations
Precisely how humans process relational patterns of information in knowledge, language, music, and society is not well understood. Prior work in the field of statistical learning has demonstrated that humans process such information by building internal models of the underlying network structure. Ho...
Autores principales: | Qian, William, Lynn, Christopher W., Klishin, Andrei A., Stiso, Jennifer, Christianson, Nicolas H., Bassett, Dani S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9436382/ https://www.ncbi.nlm.nih.gov/pubmed/35994661 http://dx.doi.org/10.1073/pnas.2121338119 |
Ejemplares similares
-
Human Learning of Hierarchical Graphs
por: Xia, Xiaohuan, et al.
Publicado: (2023) -
Network architectures supporting learnability
por: Zurn, Perry, et al.
Publicado: (2020) -
Network constraints on learnability of probabilistic motor sequences
por: Kahn, Ari E., et al.
Publicado: (2018) -
Deep Learnability: Using Neural Networks to Quantify Language Similarity and Learnability
por: Cohen, Clara, et al.
Publicado: (2020) -
Learnability and cognition: the acquisition of argument structure
por: Pinker, Steven
Publicado: (2013)