Cargando…
An Assessment of Lexical, Network, and Content-Based Features for Detecting Malicious URLs Using Machine Learning and Deep Learning Models
The World Wide Web services are essential in our daily lives and are available to communities through Uniform Resource Locator (URL). Attackers utilize such means of communication and create malicious URLs to conduct fraudulent activities and deceive others by creating deceptive and misleading websi...
Autores principales: | Aljabri, Malak, Alhaidari, Fahd, Mohammad, Rami Mustafa A., Samiha Mirza, Alhamed, Dina H., Altamimi, Hanan S., Chrouf, Sara Mhd. Bachar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9436524/ https://www.ncbi.nlm.nih.gov/pubmed/36059391 http://dx.doi.org/10.1155/2022/3241216 |
Ejemplares similares
-
Classification of Malicious URLs Using Machine Learning
por: Abad, Shayan, et al.
Publicado: (2023) -
Malicious URL Detection Based on Associative Classification
por: Kumi, Sandra, et al.
Publicado: (2021) -
BERT-Based Approaches to Identifying Malicious URLs
por: Su, Ming-Yang, et al.
Publicado: (2023) -
Cyber Threat Intelligence-Based Malicious URL Detection Model Using Ensemble Learning
por: Ghaleb, Fuad A., et al.
Publicado: (2022) -
An intelligent identification and classification system for malicious uniform resource locators (URLs)
por: Abu Al-Haija, Qasem, et al.
Publicado: (2023)