Cargando…
An efficient deep neural network framework for COVID-19 lung infection segmentation
Since the outbreak of Coronavirus Disease 2019 (COVID-19) in 2020, it has significantly affected the global health system. The use of deep learning technology to automatically segment pneumonia lesions from Computed Tomography (CT) images can greatly reduce the workload of physicians and expand trad...
Autores principales: | Jin, Ge, Liu, Chuancai, Chen, Xu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9436790/ https://www.ncbi.nlm.nih.gov/pubmed/36068814 http://dx.doi.org/10.1016/j.ins.2022.08.059 |
Ejemplares similares
-
MIScnn: a framework for medical image segmentation with convolutional neural networks and deep learning
por: Müller, Dominik, et al.
Publicado: (2021) -
An Efficient Framework to Detect Intracranial Hemorrhage Using Hybrid Deep Neural Networks
por: Rajagopal, Manikandan, et al.
Publicado: (2023) -
Diagnosing COVID-19 from CT Image of Lung Segmentation & Classification with Deep Learning Based on Convolutional Neural Networks
por: Kumari, K. Sita, et al.
Publicado: (2021) -
Framework for COVID-19 segmentation and classification based on deep learning of computed tomography lung images
por: Salama, Wessam M., et al.
Publicado: (2022) -
Deep Neural Networks for Medical Image Segmentation
por: Malhotra, Priyanka, et al.
Publicado: (2022)