Cargando…
Subpopulation-specific machine learning prognosis for underrepresented patients with double prioritized bias correction
BACKGROUND: Many clinical datasets are intrinsically imbalanced, dominated by overwhelming majority groups. Off-the-shelf machine learning models that optimize the prognosis of majority patient types (e.g., healthy class) may cause substantial errors on the minority prediction class (e.g., disease c...
Autores principales: | Afrose, Sharmin, Song, Wenjia, Nemeroff, Charles B., Lu, Chang, Yao, Danfeng (Daphne) |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9436942/ https://www.ncbi.nlm.nih.gov/pubmed/36059892 http://dx.doi.org/10.1038/s43856-022-00165-w |
Ejemplares similares
-
Mitigating Bias in Virtual Interviews for Applicants Who are Underrepresented in Medicine
por: Nwora, Christle, et al.
Publicado: (2021) -
GC bias affects genomic and metagenomic reconstructions, underrepresenting GC-poor organisms
por: Browne, Patrick Denis, et al.
Publicado: (2020) -
Can personalized medicine mitigate confirmation bias in mental health?
por: Perna, Giampaolo, et al.
Publicado: (2021) -
Machine Learning Strategies for Improved Phenotype Prediction in Underrepresented Populations
por: Bonet, David, et al.
Publicado: (2023) -
Correction: Voluntary Medical Male Circumcision for HIV Prevention: New Mathematical Models for Strategic Demand Creation Prioritizing Subpopulations by Age and Geography
por: Hankins, Catherine, et al.
Publicado: (2016)